
IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021 5409

Data-Driven Copy-Paste Imputation for
Energy Time Series

Moritz Weber , Marian Turowski , Hüseyin K. Çakmak , Ralf Mikut ,

Uwe Kühnapfel , Member, IEEE, and Veit Hagenmeyer , Member, IEEE

Abstract—A cornerstone of the worldwide transition to smart
grids are smart meters. Smart meters typically collect and
provide energy time series that are vital for various applications,
such as grid simulations, fault-detection, load forecasting, load
analysis, and load management. Unfortunately, these time series
are often characterized by missing values that must be handled
before the data can be used. A common approach to handle
missing values in time series is imputation. However, existing
imputation methods are designed for power time series and do
not take into account the total energy of gaps, resulting in jumps
or constant shifts when imputing energy time series. In order
to overcome these issues, the present paper introduces the new
Copy-Paste Imputation (CPI) method for energy time series. The
CPI method copies data blocks with similar characteristics and
pastes them into gaps of the time series while preserving the total
energy of each gap. The new method is evaluated on a real-world
dataset that contains six shares of artificially inserted missing
values between 1 and 30%. It outperforms the three benchmark
imputation methods selected for comparison. The comparison
furthermore shows that the CPI method uses matching patterns
and preserves the total energy of each gap while requiring only
a moderate run-time.

Index Terms—Time series imputation, energy time series,
missing values.

I. INTRODUCTION AND STATE OF THE ART

IN THE course of the worldwide transition to an energy
system mainly based on renewable energy sources, a key

is the implementation of smart grids [1]. Smart meters are
a cornerstone of these smart grids and are thus installed in
an increasing number worldwide. They record and transmit
a variety of data such as voltage, reactive power, or the
electricity consumption of consumers [2]. The collected data
is an essential input to various applications supporting and
enabling the transition to energy systems from renewable ener-
gies. For example, the collected data enables grid operators
to perform grid simulations [3] for stability analysis, grid

Manuscript received December 23, 2020; revised April 16, 2021 and June
15, 2021 ; accepted July 28, 2021. Date of publication August 2, 2021; date of
current version October 21, 2021. This work was supported by the Helmholtz
Association under the Joint Initiative “Energy System 2050—A Contribution
of the Research Field Energy.” Paper no. TSG-01899-2020. (Moritz Weber and
Marian Turowski contributed equally to this work.) (Corresponding author:
Moritz Weber.)

The authors are with the Institute for Automation and Applied Informatics,
Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen,
Germany (e-mail: moritz.weber@kit.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2021.3101831.

Digital Object Identifier 10.1109/TSG.2021.3101831

development, fault-detection, and efficiency improvements.
The collected data is also needed for load forecasting [4],
load analysis, and load management [5]. Moreover, the col-
lected data allows research facilities to develop technologies
for the grid of the future.

The results of these applications highly depend on the qual-
ity of the input data. The data quality, in turn, is highly
influenced by two key challenges in the smart grid infras-
tructure: the accuracy of data acquisition and the reliability of
data transmission and data storage [6]. The accuracy of data
acquisition refers to the correctness of the recorded data. It is
reduced by problems causing, for example, noise and outliers
in the data [7], [8]. For further processing, outliers in par-
ticular are often detected and labeled as missing values as a
first step [2], [9]. The reliability of data transmission and data
storage, however, mainly relates to the completeness of the
recorded data. In implemented smart meter systems, recorded
data contain between 3 and 4% of missing values, for exam-
ple due to planned outages [6], [10]. Due to these two key
challenges of smart grids, missing values in recorded data are
a common problem. Although some applications are able to
handle incomplete data [11], most applications require that the
missing values are handled by pre-processing the data.

A common method to handle missing data is imputation.
Imputation replaces missing values with values that should
resemble the actual data [12]. Since missing values are a com-
mon problem in real-world datasets, many imputation methods
exist for time series: They range from very basic methods such
as linear interpolation and Last Observation Carried Forward
(LOCF) [12] over time series analysis-based methods [9], [13]
to learning-based methods [14], [15].

To further improve the imputation, it is a common approach
to focus on time series from a particular domain and to con-
sider their characteristics as additional information. In the
context of smart meters, the recorded time series of electricity
consumption or generation are typically influenced by factors
such as weather, human routines, social norms (e.g., week-
ends or holidays) and many others [16], [17]. These factors
often lead to the commonly known characteristic patterns with
daily, weekly, and yearly periodicities, which can be utilized
by imputation methods. For example, daily and weekly pat-
terns are exploited in [18]. The pattern frequency of a power
time series is estimated with the auto-correlation function and
the mean values of the estimated pattern frequency are used
to impute missing values. In another work [19], the similarity
between days is used by filling larger gaps in a power time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7206-1879
https://orcid.org/0000-0002-3776-2215
https://orcid.org/0000-0002-1463-7606
https://orcid.org/0000-0001-9100-5496
https://orcid.org/0000-0002-2218-3229
https://orcid.org/0000-0002-3572-9083

5410 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

series with the average values of validated reference days. Very
short gaps with a length of two hours or less are imputed
with a linear interpolation, as this often fits the very short-
term characteristics of smart meter time series. The Optimally
Weighted Average approach in [16] utilizes daily and weekly
patterns as well as seasonality to select appropriate historical
values. With these values, the historical averages of a power
time series are calculated, before they are combined with a
linear interpolation for smooth transitions between actual and
imputed values.

Other methods utilize even more additional data or
information to impute missing values in smart meter time
series. An example is the method for imputation, de-noising,
and outlier removal based on Principal Component Pursuit
in [20]. It utilizes the spatial correlations in the power load
profiles of adjacent substations. In [21], the time series mea-
sured by smart meters in a factory are used to impute missing
values in other time series from smart meters located in the
same factory with clustering and k-nearest neighbors. In [22],
the imputation of substation data is formulated as a forecasting
problem. The forecast uses the collected power data of nearby
substations as well as weather data, which often has an impact
on power consumption and generation.

While all of these imputation approaches are specifically
designed for smart meter time series, all of them except [21]
are limited to the imputation of power time series and none of
the approaches utilizes the inherent properties of energy time
series. In a power time series P, every entry pt contains the
average power consumption or generation between two time
steps t − 1 and t. However, smart meters typically provide
energy time series by default. In an energy time series E, every
entry et contains the meter reading, i.e., the energy that has
been consumed or generated up to time step t. Therefore, –
unlike in power time series – if, for example, entries between
the entries et to et+3 are missing in an energy time series, the
next existing entry et+4 still contains the information about
the total energy, which was consumed or produced between
t − 1 and t + 4. As a consequence, a power time series can
be derived from an energy time series with missing values but
not vice versa.

Thus, in the present paper, we propose the novel Copy-Paste
Imputation (CPI) method for univariate energy time series.
It uses an energy time series as input and copies blocks of
data with similar characteristics into gaps. By copying blocks
of matching data, the inherent patterns of the time series are
preserved, even in time series with pattern changes. For this
purpose, the CPI method utilizes the information about the
total energy of each gap that energy time series contain in
contrast to power time series. It can, therefore, guarantee that
the total recorded energy remains unchanged during the impu-
tation. To the best of our knowledge, no other method in
literature has so far used this property of energy time series
for imputation. By this imputation, the CPI method achieves
complete energy time series, which also allows deriving a com-
plete power time series. Both energy and power time series can
then serve as input for all of the aforementioned applications
that support and enable the transition to energy systems from
renewable energies.

The remainder of the present paper is structured as follows.
The proposed method is explained in detail in Section II and
evaluated against three benchmark methods on a real-world
dataset in Section III. Concluding remarks and an outlook are
given in Section IV.

II. NOVEL COPY-PASTE IMPUTATION METHOD

In this section, the newly proposed Copy-Paste Imputation
(CPI) method1 is described. As illustrated in the exemplary
application in Figure 1, the CPI method uses an energy time
series with gaps, i.e., one or multiple consecutive missing val-
ues, as input and imputes the missing values by filling them
with the best matching days of the same time series. In the
following, we describe each step of the CPI method in detail
and reference the corresponding lines in Algorithm 1 and the
corresponding part in Figure 1.

A. Linear Interpolation of Single Missing Values

In the first step of the CPI method, single missing values,
i.e., individual meter readings, are imputed in the given energy
time series (line 1). For this imputation, a linear interpola-
tion is used because it provides sufficiently correct estimates
for individual missing values. We consider only single miss-
ing values in this step to limit the number of consecutively
linearly interpolated values and thus potentially unrealistic
imputations, while still benefiting from these easily imputable
values. Indeed, the resulting imputed values are considered as
correct in the subsequent steps to increase the number of days
without missing values that are available for copying.

B. Energy Consumption Estimation

The second step of the CPI method is the energy con-
sumption estimation for days with gaps (lines 2 - 6). The
total energy consumption2 during gaps can be determined
because the CPI method uses an energy time series as input. In
energy time series, the first entry after a gap still contains the
information about the total energy consumed during the gap
(see Figure 1(a)). For this reason, to obtain the total energy
consumption Ei of the gap i from time step t to time step t+k,
we calculate the energy difference, i.e.,

Ei = et+k+1 − et−1, (1)

where et+k+1 and et−1 are the energy consumption at the time
steps t + k + 1 and t − 1 respectively. This equation is the
basis of the estimation of the missing energy in line 5 of the
CPI algorithm.

However, for gaps longer than one day, the calculated
energy consumption must be allocated to the respective days
appropriately. For this purpose, firstly, the calculated energy
consumption of the gap is distributed to the respective days
according to their share of missing values. Figure 1(b) illus-
trates this distribution of the calculated energy consumption

1A Python implementation of the CPI method is available on
https://github.com/KIT-IAI/CopyPasteImputation.

2In the following, we refer to consumption data only, but the same
principles apply to generation data.

WEBER et al.: DATA-DRIVEN COPY-PASTE IMPUTATION FOR ENERGY TIME SERIES 5411

Fig. 1. Exemplary application of the novel Copy-Paste Imputation (CPI) method to two weeks of a typical real-world energy consumption time series with
missing values.

between Friday and Saturday for the given example. Secondly,
we consider a weekly pattern in the daily energy consumption.
For this pattern, we use the weekly pattern of the input energy

time series estimated by the Prophet method [11]. It models
the weekly pattern such that the values of all weekdays add
up to zero. If some of these values are positive, others need

5412 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Algorithm 1: Copy-Paste Imputation (CPI)
Input: energy time series ets with missing values (i.e. NaNs)
Result: ets without missing values, optionally power time series pts

1 ets← single_value_linear_interpolation(ets)
2 energy_per_day← calculate_energy_per_day(ets)
3 non_complete_days← determine_days_with_missing_values(ets)
// each entry in this list describes whether a day of ets has missing values

4 weekly_pattern← estimate_weekly_pattern_with_prophet(energy_per_day, non_complete_days)
// only consider the daily energy consumption of the days without missing values

5 missing_energy_per_day← estimate_missing_energy_per_day(ets, weekly_pattern)
6 estimated_energy_per_day← energy_per_day+ missing_energy_per_day
7 complete_days← compile_list_of_complete_days(ets.time, energy_per_day, non_complete_days)

8 pts← derive_power_ts_from_energy_ts(ets)
9 foreach day with missing values do

10 best_matching_day← find_day_with_min_dissimilarity(day, complete_days)
11 pts[day]← pts[best_matching_day]
12 end
13 foreach gap in ets do
14 scaling_factor← actual_energy_of _gap / imputed_energy_of _gap
15 pts[gap]← pts[gap] · scaling_factor
16 end
17 ets← calculate_energy_ts_from_power_ts(pts)

to be negative. For the estimation of these values, the Prophet
method only considers the daily energy consumption of the
days without missing values, i.e., one value per day. For
the given example, Figure 1(c) visualizes the weekly pattern.
Lastly, the estimated weekly pattern is added to all days of the
gap as shown in Figure 1(d). When adding the weekly pattern,
the added energy is summed up. The sum of the added energy
is then divided by the number of days in the gap to obtain the
average. This average is subtracted from each day of the gap
to preserve the total energy consumption of the gap.

C. Compilation of Available Complete Days

In the third step of the CPI method, a list of the available
complete days (i.e., days without missing values) is compiled
(line 7). Assuming daily patterns, a weekly cycle, and a yearly
seasonality in the energy consumption, each day is listed with
its following characteristics: its total energy consumption (de),
its weekday (dw ∈ {1 . . . 7}), and its seasonal position (ds).
Under the assumption of a yearly seasonality, i.e., 365 days
or 366 days for leap years, it follows that ds is in {1 . . . 366}.
An example of a list with days and their characteristics is
shown in Figure 1(e).

D. Calculation of Dissimilarity Between Days

In the fourth step, the CPI method calculates a dissimilarity
criterion between each day with gaps and all complete days
(line 10), which is used to select the best matching days for
filling gaps in the next step. For the dissimilarity criterion, the
CPI method uses the three previously introduced character-
istics of days: total energy, weekday, and seasonal position.

Since these characteristics are already computed for all com-
plete days, they only have to be determined for the days with
missing values in this step. More specifically, three distance
measures, i.e., De, Dw, and Ds, are calculated for each day
with gaps di and each available complete day dj.

The first distance measure De describes the distance
between the total energy consumption of a day with gaps
di and a complete day dj. The total energy consumption can
serve as a distance measure because the CPI method uses an
energy time series as input and thus can calculate the energy
consumed during a gap. De is defined as

De
(
di, dj

) =
∣∣di,e − dj,e

∣∣

emax − emin
, (2)

where emax and emin are the maximum and minimum energy
consumption of a day in the time series and di,e and dj,e are
the total energy consumption of the days di and dj. For the day
with gaps di, the previously estimated energy consumption is
used. Dividing by the difference between emax and emin ensures
that the distance measure De is in [0, 1].

The second distance measure Dw is based on the assumption
of a weekly pattern in the time series and describes the distance
between the weekday of a day with gaps di and a complete
day dj. It is defined as

Dw
(
di, dj

) =

⎧
⎪⎪⎨

⎪⎪⎩

0.0, if di,w = dj,w

0.5, if di,w ∈ {1..5} ∧ dj,w ∈ {1..5}
∨ di,w ∈ {6, 7} ∧ dj,w ∈ {6, 7}

1.0, else,

(3)

where di,w and dj,w are integer representations for the week-
day of days di and dj. One to five represent the workdays
Monday to Friday, whereas 6 and 7 represent the weekend

WEBER et al.: DATA-DRIVEN COPY-PASTE IMPUTATION FOR ENERGY TIME SERIES 5413

days Saturday and Sunday. This distance measure Dw assigns
smaller distances to days of the same weekday or days of the
same class (i.e., workday or weekend) and higher distances to
days of different classes.

The third distance measure Ds captures the underlying sea-
sonal patterns and describes the distance between the seasonal
position of a day with gaps di and a complete day dj. It is
defined as

Ds
(
di, dj

) =
⎧
⎨

⎩

|di,s−dj,s|
� s

2 � , if
∣∣di,y − dj,y

∣∣ ≤ � s
2�

s−|di,s−dj,s|
� s

2 � , else,
(4)

where s is the length of the seasonal cycle and di,s and dj,s

are the position of days di and dj in this cycle. For a yearly
seasonality, s can be set to 365 or 366 to reflect the number of
days in a year. This distance measure ensures that two days
from the same season are considered as more similar than
two days from different seasons. For example, January 1 and
December 31 of the same year are almost one year apart but
have a minimal distance Ds. In contrast, January 1 and July 1
are only half a year apart and have a maximal distance Ds.

In order to determine the dissimilarity between a day with
gaps and a complete day, the three individual distance mea-
sures are combined into a single criterion. The resulting
dissimilarity criterion D is the weighted sum of the three
individual distance measures De, Dw, and Ds. It is defined as

D = weDe + wwDw + wsDs, (5)

where we, ww, and ws are the weights and De, Dw, and Ds

are the normalized distance measures. The individual distance
measures are normalized to the interval [0,1] for an eas-
ier interpretation of these weights. The specification of these
weights is necessary once before applying the CPI method.
To find suitable weights, one possible approach is to con-
duct a grid search on a representative set of time series (see
Section III-C3 for an exemplary grid search). For the given
example, Figure 1(f) shows the individual distances between
the first Friday as a day with gaps and all the other days and
the resulting dissimilarity values D for given weights.

E. Copy and Paste of Matching Days

In the last step, the CPI method copies the best match-
ing days, pastes them into gaps (line 11), and scales the
imputed values to preserve the energy of the respective gaps
(lines 13 - 16). In order to determine the best matching days,
the previously generated list of complete days is used. For a
day with gaps di, the day dj with the smallest dissimilarity
D(di, dj) is chosen. Since the entire list of complete days is
used, days from the future of the day with gaps are also con-
sidered. In the given example in Figure 1(f), the most similar
day is the second Friday of the time series because that Friday
has the lowest dissimilarity value.

Based on the determined best matching days, the actual
copying and pasting of the best matching days into gaps
is done. For this purpose, the power time series, as shown
in Figure 1(g), serves as basis. It can be derived from the
input energy time series (line 8) by calculating the average

power pt between time steps t − 1 and t, i.e.,

pt = et − et−1

�t
, (6)

where �t is the time between two time steps, et and pt are
the energy and power at time step t, and et−1 is the energy at
time step t−1. In the derived power time series, every missing
value in each day with gaps is replaced by the corresponding
value of the previously determined best matching complete
day (see Figure 1(h)).

Finally, the imputed power values are scaled in order to
preserve the actual energy of each gap. The scaling is based
on the actual energy and the imputed energy. Both can be
determined because the CPI method uses energy time series
as input and thus can calculate the energy consumed during a
gap. The actual energy Ei of the gap i is calculated according
to Equation (1). The imputed energy E′i is calculated by accu-
mulating the imputed power values. To preserve the energy,
the imputed power values of gap i are multiplied with the ratio
of the actual energy and the imputed energy, i.e.,

p̂t = p̂′t ·
Ei

E′i
, (7)

where p̂′t is the power value calculated by the CPI method and
p̂t is the scaled power value. After this scaling, the imputed
power time series can be used to calculate an imputed energy
time series by solving Equation (6) for et. With the calculated
energy time series, the CPI method finally returns a com-
plete energy time series whose initially missing values are
completely imputed.

III. EVALUATION

In this section, the proposed CPI method is evaluated on
real-world data and its performance is compared to benchmark
methods. Therefore, the used dataset is introduced followed
by the selected benchmark methods. After describing the
experimental setting, the results are presented.

A. Dataset

The dataset used for the evaluation is the
ElectricityLoadDiagrams20112014 dataset3 from the UCI
Machine Learning Repository [23]. The dataset consists of
power time series with complete consumption data from 370
different smart meters over a period of up to four years.
The time series contain quarter-hourly average power values
in kW, resulting in 35,040 values per year. Of these 370 time
series, 50 differently shaped time series with a length of one
year are selected as a representative sample. The selected
time series vary greatly in terms of seasonal, weekly, and
daily patterns as illustrated in Figure 2.

For the evaluation of the CPI method, the selected power
time series, that do not contain any missing values, are con-
verted to energy time series by accumulating the power values.
Due to their completeness, we artificially insert missing values
in the used time series by replacing values with NaNs. In order
to decide which values are replaced, we follow four steps.

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

5414 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 2. Three exemplary time series from the UCI dataset, containing variations of different seasonal, weekly, and daily patterns.

Firstly, we determine the longest sequence of the time series
without missing values Tc. Secondly, we define the number of
consecutive values to be replaced in this sequence Tc by choos-
ing uniformly between 2 and the minimum of the specified
maximum number of consecutive missing values, the length
of Tc, and the remaining number of values to be replaced.
Thirdly, we randomly select a starting index for the deter-
mined number of consecutive values to be replaced such that
all values to be replaced are contained in Tc. Lastly, we replace
each selected value with NaN. These four steps are repeated
until the total number of values to be replaced is reached.

For the evaluation, we consider the number of values to
be replaced in the form of shares of missing values. In the
evaluation, six shares of missing values are used between 1%
and 30%, i.e., 1, 2, 5, 10, 20, and 30%. In order to consider
both larger gaps and single missing values, 5% of each share
of missing values are single missing values. The indices for the
single missing values are determined randomly after creating
the larger gaps.

B. Benchmark Methods

In order to compare the performance of the proposed CPI
method, we apply benchmark methods to the dataset. As suit-
able benchmark methods, we generally consider all imputation
methods for energy time series that utilize the time series
and its characteristics only. Due to the lack of imputation
methods for energy time series – to the best knowledge of
the authors –, we include imputation methods for power time
series and time series in general despite their disadvantage of
not utilizing energy data. Methods requiring additional data
or information such as weather data [9], [13] or validated ref-
erence days [19] and methods designed for multivariate time
series only [14], [20], [22] are discarded due to their lack of
comparability. Furthermore, during the evaluation, the method
in [15] is excluded due to its excessive run-time.

In this context, we select three methods as benchmarks in
view of comparison complexity and fairness. We derive these
methods from literature [11], [12], [16], [18] and adapt them
where necessary. To establish a fair comparison, the evaluated
benchmark methods receive their data input in the same way
as the CPI method. They sequentially get the 50 time series
and can use each time series completely but independently
from the others.

The first benchmark method is a commonly applied lin-
ear interpolation [12], [16]. This method represents a lower
baseline and should be outperformed in any case. It imputes
missing values p̂t by linearly interpolating the first and last
known power value before and after a gap, i.e.,

p̂t = t − t1
t2 − t1

· (pt2 − pt1

)+ pt1 , (8)

where t1 and t2 are the time steps before and after the gap.
The linear interpolation is thus the only evaluated method that
uses two values for imputing a gap.

The second benchmark method is the Optimally Weighted
Average (OWA) [16]. Assuming a weekly pattern, this method
calculates a historical average

p̂HA
t = 1

|H|�i∈Hpi, (9)

where H contains all values of the hour before and after t
as well as of the same two hours of the previous and of the
next week. As long as H is empty, the considered weeks are
iteratively extended by one in each direction to consider addi-
tional values from the same two hours in more weeks. To
ensure smooth transitions between actual and imputed values,
this average is combined with a linear interpolation p̂LI

t (8).
The combination results in

p̂t = wtp̂
LI
t + (1− wt)p̂

HA
t , (10)

where wt weighs the influence of the two imputation methods.
The weight wt is designed to decrease with increasing distance

WEBER et al.: DATA-DRIVEN COPY-PASTE IMPUTATION FOR ENERGY TIME SERIES 5415

to the actual values, i.e.,

wt = e−αdt , (11)

where dt describes the distance from t to the nearest actual
value in time steps and α determines the rate of decay for wt.
Since α has a negligible influence on the imputation results
in the present evaluation, we use a global α = 0.1387 for the
evaluation as determined in [16].

The third benchmark method is based on the Prophet
method for time series forecasting [11]. Prophet uses a
modular regression model that can be described as

y(t) = g(t)+ s(t)+ h(t)+ εt, (12)

where g is a model for the trend, s for seasonality, h for
holidays, and εt for changes that are not represented in the
model. The imputation method based on this model exploits
Prophet’s capability to estimate a time series model on irreg-
ularly spaced data [11] and imputes missing values with the
corresponding values of the model. The model is learned on all
values available in the time series to be imputed. In contrast to
its application in the CPI method, the benchmark imputation
method based on Prophet receives, like all other benchmark
methods, the aforementioned quarter-hourly values as input,
i.e., 96 values per day.

C. Experimental Setting

This subsection describes the used hard- and software plat-
form, introduces the error measures to evaluate the imputation
methods, and explains the calculation of the weights in the
dissimilarity measure of the evaluated CPI method.

1) Hard- and Software Platform: For the evaluation of the
CPI and the benchmark methods, we compare the quality of
the imputation and the required run-time. For a better compa-
rability of the results, all methods are implemented in Python
and evaluated on the same hardware. The evaluation hardware
is a desktop PC running Ubuntu 20.04 with an AMD Ryzen 5
3600 processor and 16GB of memory.

2) Error Measures: In order to evaluate the quality of an
imputation in energy time series, we examine both the usage
of matching patterns to fill gaps and the conservation of the
total energy in the gaps. To evaluate the usage of matching
patterns, we determine how well imputed patterns match the
actual patterns. For this purpose, we measure the deviation
between every single actual power value and the correspond-
ing imputed power value using the Mean Absolute Percentage
Error (MAPE). It is defined as

MAPEp = 1

|Tm|�t∈Tm

∣∣∣∣
p̂t − pt

pt

∣∣∣∣, (13)

where pt and p̂t are the actual and imputed power values at
time step t and Tm is the set of time steps with missing values.
To evaluate the conservation of the total energy in gaps, we
measure the difference between the actual and imputed energy
while ignoring the fine granular patterns that are used for the
imputation. The difference is determined using the Weighted

Absolute Percentage Error (WAPE), which is defined as

WAPEE =
�N

i=1

∣∣∣Êi − Ei

∣∣∣

�N
i=1Ei

, (14)

where Ei and Êi are the actual and imputed energy of gap i
in a time series with N gaps. In contrast to the MAPEp (13),
the weighting of the individual absolute errors is necessary in
the WAPEE (14) to account for gaps of different sizes.

3) Weights in the CPI Dissimilarity Measure: Before copy-
ing and pasting matching days, the CPI method calculates the
dissimilarity measure between two days (5). For this calcu-
lation, it is necessary that the weights of the three distance
measures regarding total energy consumption, weekday, and
seasonal position are specified beforehand. To determine these
weights for the CPI method applied in the evaluation, we thus
perform a grid search.

This grid search is conducted before the actual evaluation on
a separate dataset that is used only for calibration. To com-
pile the calibration dataset, we consider the remaining 320
time series given in the aforementioned dataset. Based on a
visual inspection, we choose five time series for the calibration
dataset, which are different from each other but have similar
characteristics to the 50 time series in the evaluation. Each of
the five time series from the calibration dataset is evaluated
with six different shares of missing values, ranging from 1%
to 30%, which results in 30 time series in total.

Using this calibration dataset, we test 1,000 combinations
of the three weights w = (we, ww, ws) with each weight in
the range [1 . . . 10]. Each combination of weights is evaluated
with both error measures MAPEp (13) and WAPEE (14) on
all time series of the calibration dataset. Based on the results,
we determine the overall minimum and maximum of both
error measures. With them, we min-max normalize the val-
ues of both error measures. The min-max normalized MAPEp
is calculated with

MAPEp,n(w, i) = MAPEp(w, i)−min MAPEp

max MAPEp −min MAPEp
, (15)

where w is the tested weight combination and i is the identifier
of the time series from the calibration dataset. The min-max
normalized WAPEE is determined analogously to (15). To
obtain the average sum of both normalized error measures
TE, we first add the normalized results of both error mea-
sures together for each time series from the calibration dataset.
Afterward, we sum this total over all time series and divide it
by the number of time series, i.e.,

TE(w) =
∑n

i MAPEp,n(w, i)+WAPEE,n(w, i)

n
, (16)

where n is the number of time series in the calibration dataset.
Finally, we determine the weights with the minimum average
sum of both normalized error measures, i.e.,

wopt = arg min
w

TE(w), (17)

representing the optimal weights wopt.

5416 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 3. The two error measures of the best, worst, and overall best weights for the five time series from the calibration dataset used in the grid search. Every
time series is evaluated with six different shares of missing values ranging from 1% to 30%, resulting in a total number of 30 tested time series. The orange
bars indicate the errors of the best weights, the red bars the errors of the worst weights, and the purple bars the errors resulting from the determined optimal
weight combination wopt .

D. Results

Based on the 50 selected time series, the selected bench-
mark methods, and the experimental setup described above,
this section explains the evaluation results. It first covers the
grid search, before describing the usage of matching patterns
and the conservation of energy, quantified by MAPEp (13) and
WAPEE (14) respectively. The presented values of these error
measures are the truncated means for the 50 evaluated time
series, which omit the two best and worst values to obtain less
outlier-sensitive results. Afterward, the run-time of the eval-
uated methods and its decomposition is addressed before the
usage of matching patterns and the run-time are put in com-
parison. Lastly, the output of an exemplary imputation visually
illustrates the evaluation results.

1) Grid Search: The grid search evaluates the aforemen-
tioned 1,000 weight combinations in 91 minutes with a total
system memory usage of approximately 3.5GB. Figure 3
shows the MAPEp (13) and WAPEE (14) for the tested time
series. For each time series and each share of missing val-
ues, an orange bar depicts the result with the best weights.
Accordingly, the red bars show the worst results. The dark
purple bars describe the results with the overall best weights
wopt = (5, 1, 10) determined with Equation (17). The grid
search reveals that every time series has its own optimal
weight combination. Nevertheless, the difference between the
results with the best and the worst weights is often very
small. Similarly, the difference between the results with the
best weights and the overall best weights wopt is often neg-
ligible. wopt is, therefore, used for all 50 time series to be
evaluated.

2) Usage of Matching Patterns: The usage of matching
patterns – as defined in Equation (13) – by the evaluated
methods is presented in Figure 4. For the six different shares
of artificially inserted missing values, the figure shows the
MAPEp (13) of all evaluated methods. For most of the shares
of missing values, the CPI method performs better than the
OWA method as the best benchmark method. Both methods
perform overall about 10 - 12% better than the Prophet-based
method. The linear interpolation performs by far the worst

Fig. 4. The MAPEp (13) of the CPI method and the three benchmark
methods with different shares of missing values. As the scaling of imputed
values does not noticeably affect the results of the CPI method, it is omitted
in this figure.

for all shares of missing values. All methods tend to higher
errors with higher shares of missing values. This trend is
most distinct for the linear interpolation. With regard to the
errors of individual time series, the benchmark methods are
more prone to extreme errors with a maximum MAPEp (13)
of 5.88 and above while the CPI method has a maximum
MAPEp (13) of 2.37.

3) Conservation of Energy: For the four evaluated meth-
ods, the conservation of energy in the gaps – as defined in
Equation (14) – is shown in Figure 5. The figure presents
the WAPEE (14) for the six shares of missing values. The
CPI method performs best regardless of the share of missing
values. To allow a better comparability with the benchmark
methods that all do not use scaling, the dashed line indi-
cates the error values for the CPI method without scaling.
Without scaling, the CPI method performs on average 4.4%
better than the OWA method, which is the second best method.
We assume that this result is strongly related to using energy
as a distance measure, which is possible thanks to the use
of energy time series as input. The scaling even reduces the
error to nearly zero for all shares of missing values, so the

WEBER et al.: DATA-DRIVEN COPY-PASTE IMPUTATION FOR ENERGY TIME SERIES 5417

Fig. 5. The WAPEE (14) of the CPI method and the three benchmark
methods with different shares of missing values. For better comparability with
the benchmark methods that all do not use scaling, the dashed line indicates
the WAPEE of the CPI method without scaling the imputed values to preserve
the energy of a gap.

Fig. 6. The average run-times required by the CPI method and the three
benchmark methods for the imputation of the 50 selected one-year time series.
Note the logarithmic time scale, which visually compresses Prophet’s run-time
decrease by 5.8 seconds from 1 to 30% of missing values.

Fig. 7. Run-time of the CPI method for time series with different lengths
from three months (8,832 values) up to three years (105,120 values).

CPI method performs even better. In view of the already good
results without scaling, the contribution of scaling is, however,
relatively small. The linear interpolation again performs worst
for all shares of missing values. The Prophet-based method
and the OWA method perform very similarly with an average
advantage of 1.6% for the OWA method.

4) Run-Time: Figure 6 shows the average run-times
required by the evaluated methods for the imputation of the
50 selected one-year time series with 35,040 values each. The
linear interpolation is by far the fastest method. The OWA

Fig. 8. Run-time decomposition of the CPI method and the three bench-
mark methods into model estimation including training and fitting as well as
imputation.

Fig. 9. Comparison of the usage of matching patterns and the average run-
time needed of the CPI method and the three benchmark methods for the
imputation of 50 one-year time series. The x-axis shows the required average
run-times on a logarithmic scale and the y-axis the MAPEp (13).

method is similarly fast for small shares of missing values but
increases more drastically in run-time than the other meth-
ods for increasing shares of missing values. The CPI method
requires about 10 to 20 times more time than the linear inter-
polation but is faster than the OWA method for 20 and 30%
of missing values. The Prophet-based method requires much
more time than all other methods and is 9 to 10 times slower
than the CPI method. Its longer run-time compared to the CPI
method, wherein the Prophet method is also used, is caused by
a more time-consuming training due to its larger input. When
applied as benchmark method, the Prophet method receives
96 values per day as input as opposed to only one value per
day when used in the CPI method.

In addition to the run-time evaluation for the one-year time
series, we briefly evaluate how the CPI method’s run-time
relates to the number of input values. Figure 7 shows the
run-time of the CPI method for time series with different
lengths from one quarter of a year (8,832 values) up to three
years (105,120 values). The CPI method scales approximately

5418 IEEE TRANSACTIONS ON SMART GRID, VOL. 12, NO. 6, NOVEMBER 2021

Fig. 10. The upper figure shows an exemplary one-year time series with 20% of missing values. For a multi-day excerpt of a gap in November, the lower
figure presents the resulting imputations by the CPI method and the three benchmark methods in comparison to the actual values. Metrics of the CPI method
and the best benchmark method for this example: MAPEp (13): 0.194 (OWA: 0.211), WAPEE (14): 0.003 (OWA: 0.065), run-time: 2.89s (Linear: 0.35s).

linearly to the number of input values with an average run-time
of 5.56 seconds for time series with 105,120 values.

5) Run-Time Decomposition: Figure 8 decomposes the run-
time of the evaluated methods for 1% and 30% of missing
values. Model estimation including training and fitting are
depicted in purple whereas the actual imputation is depicted in
blue. For the CPI method, the run-time is even further differen-
tiated with respect to its steps. From bottom to top, the purple
colors respectively describe the steps: linear interpolation of
single missing values, the energy consumption estimation, and
the compilation of available complete days. The blue colors
respectively indicate the steps of matching of the most similar
days, pasting the values into the gaps, scaling the imputed val-
ues, and calculating the completed energy time series. Figure 8
shows that the energy consumption estimation for gaps, that
relies on the Prophet method, is the dominating part of the CPI
method’s run-time. Similarly, the model estimation also dom-
inates the run-time of the Prophet-based method. In contrast,
the linear interpolation and the OWA method do not comprise
any model estimation. Their run-time thus consists entirely of
the imputation itself.

6) Usage of Matching Patterns vs. Run-Time: In Figure 9,
the obtained results regarding the usage of matching patterns
is put in relation to the run-time needed with a scatter plot
showing the required average run-times on the x-axis and
the MAPEp (13) on the y-axis. Smaller values indicate a
better performance. While the linear interpolation provides
fast and inaccurate results, the CPI method and the OWA
method deliver the most accurate results with a reasonable
run-time. The Prophet-based method yields mediocre results
while taking much longer to calculate than the other methods.

7) Exemplary Imputation Results: For all evaluated impu-
tation methods, Figure 10 illustrates an exemplary imputation
of a time series with 20% of artificially inserted missing
values, resulting in large gaps. The imputation of the linear
interpolation fails to capture the patterns of the time series.
The imputations by the OWA method and the Prophet-based

method capture the essential patterns but lack details. The
imputation by the CPI method mostly fits the actual values
but it shifts and increases some peaks. Despite not explic-
itly addressing the transitions between existing and imputed
values, the CPI method also generally provides smooth tran-
sitions on both ends of gaps. Compared to the three benchmark
methods, the imputation by the novel CPI method thus comes
closest to the actual values.

IV. CONCLUSION AND OUTLOOK

The present paper introduces a new Copy-Paste Imputation
method for energy time series. Using an energy time series as
input, it copies blocks of data with similar characteristics and
pastes them into gaps of the time series. This approach enables
realistic imputations even for large gaps with several weeks of
consecutively missing values. In contrast to all other methods
in the literature – to the best knowledge of the authors –, the
CPI method utilizes the often provided energy time series,
i.e., the actual meter readings, instead of power time series,
i.e., the average power per interval. Using an energy time series
allows including the information on the total energy consumed
or produced during gaps. Utilizing this information enables a
robust selection of matching blocks of data and ensures that
the overall energy per gap remains unchanged while imputing
the missing values with realistic patterns. Through imputing
missing values, the CPI methods increases the completeness
of collected energy time series and of the derivable power
time series, which are then available to applications relying on
complete input data. For the imputation itself, the CPI method
does not require any additional information such as weather
data or consumption data from spatially close smart meters.

The proposed CPI method is applied to a real-world dataset
and compared to three benchmark methods. For the evaluation,
six shares of artificially inserted missing values between 1
and 30% are used. For all shares of missing values, the CPI
method outperforms the benchmark methods. The evaluation

WEBER et al.: DATA-DRIVEN COPY-PASTE IMPUTATION FOR ENERGY TIME SERIES 5419

confirms that the CPI method uses matching patterns for the
imputations and that it conserves the overall energy of every
imputed gap. In comparison to the benchmark methods, the
CPI method requires only a moderate run-time that scales well
with increasing shares of missing values and length of input
time series. Overall, the CPI method offers a good trade-off
between the usage of matching patterns and the run-time.

Based on these results, future work could follow three
directions. First, the robustness of the CPI method could be
analyzed and improved regarding aperiodic events or time
series with other temporal resolutions and periodicities such
as residential solar power generation or fast charging of elec-
trical vehicles. Similarly, time series containing both power
consumption and generation from renewable energy sources
could be of interest for further investigation. A robustness
analysis could further include the selection of the weights in
the dissimilarity measure – for example in dynamic environ-
ments – and the compilation of the calibration data set used for
determining the weights. Furthermore, the transitions between
existing and imputed values on both ends of gaps could be
further investigated. Second, a trend analysis could enhance
the CPI method’s selection of matching days especially for
longer gaps. Similarly, additional information such as voltage
magnitude [24] and spatial temporal correlations [25] could be
used to improve the matching days selection. Third, the CPI
method could be integrated in applications that rely on com-
plete input data such as grid simulation, load forecasting, and
load management. Anomaly or error detection functions could
also be included in the CPI method itself to repair implausi-
ble values. Moreover, a reporting and analysis tool could use
the CPI method to estimate the imputation quality based on
artificially inserted missing values.

REFERENCES

[1] D. Alahakoon and X. Yu, “Smart electricity meter data intelligence for
future energy systems: A survey,” IEEE Trans. Ind. Informat., vol. 12,
no. 1, pp. 425–436, Feb. 2016.

[2] T. Alquthami et al., “Analytics framework for optimal smart meters data
processing,” Elect. Eng., vol. 102, no. 3, pp. 1241–1251, Sep. 2020.

[3] V. Hagenmeyer et al., “Information and communication technology in
energy lab 2.0: Smart energies system simulation and control center
with an open-street-map-based power flow simulation example,” Energy
Technol., vol. 4, no. 1, pp. 145–162, 2016.

[4] B. Heidrich, M. Turowski, N. Ludwig, R. Mikut, and V. Hagenmeyer,
“Forecasting energy time series with profile neural networks,” in
Proc. 11th ACM Int. Conf. Future Energy Syst. (e-Energy), 2020,
pp. 220–230.

[5] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter data
analytics: Applications, methodologies, and challenges,” IEEE Trans.
Smart Grid, vol. 10, no. 3, pp. 3125–3148, May 2019.

[6] C. King and J. Strapp, “Chapter 11—Software infrastructure and the
smart grid,” in Smart Grid: Integrating Renewable, Distributed and
Efficient Energy, F. P. Sioshansi, Ed. Amsterdam, The Netherlands:
Academic, 2012, pp. 259–288.

[7] W. Chen, K. Zhou, S. Yang, and C. Wu, “Data quality of electricity
consumption data in a smart grid environment,” Renew. Sustain. Energy
Rev., vol. 75, pp. 98–105, Aug. 2017.

[8] L. Wang et al., “Point and contextual anomaly detection in building load
profiles of a university campus,” in Proc. IEEE PES Innov. Smart Grid
Technol. Europe (ISGT-Europe), Oct. 2020, pp. 11–15.

[9] H. N. Akouemo and R. J. Povinelli, “Data improving in time series
using ARX and ANN models,” IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3352–3359, Sep. 2017.

[10] J. Peppanen, M. J. Reno, M. Thakkar, S. Grijalva, and R. G. Harley,
“Leveraging AMI data for distribution system model calibration and
situational awareness,” IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 2050–2059, Jul. 2015.

[11] S. J. Taylor and B. Letham, “Forecasting at scale,” Amer. Stat., vol. 72,
no. 1, pp. 37–45, Jan. 2018.

[12] S. Moritz and T. Bartz-Beielstein, “imputeTS: Time series missing value
imputation in R,” R J., vol. 9, no. 1, pp. 207–218, 2017.

[13] H. N. Akouemo and R. J. Povinelli, “Time series outlier detection and
imputation,” in Proc. IEEE PES Gen. Meeting Conf. Exposit., 2014,
pp. 1–5.

[14] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional
recurrent imputation for time series,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 6775–6785.

[15] N. Bokde, M. W. Beck, F. Martínez Álvarez, and K. Kulat, “A novel
imputation methodology for time series based on pattern sequence
forecasting,” Pattern Recognit. Lett., vol. 116, pp. 88–96, Dec. 2018.

[16] J. Peppanen, X. Zhang, S. Grijalva, and M. J. Reno, “Handling bad or
missing smart meter data through advanced data imputation,” in Proc.
IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. (ISGT), 2016,
pp. 1–5.

[17] J. Á. G. Ordiano, S. Waczowicz, V. Hagenmeyer, and R. Mikut, “Energy
forecasting tools and services,” WIREs Data Min. Knowl. Disc., vol. 8,
no. 2, 2018, Art. no. e1235.

[18] M. Friese et al., “UniFIeD univariate frequency-based imputation for
time series data,” Inst. Inf., Technische Hochschule Köln, Cologne,
Germany, Rep. 2194-2870, 2013. [Online]. Available: https://cos.bibl.th-
koeln.de/frontdoor/index/index/docId/36

[19] D. Matheson, C. Jing, and F. Monforte, “Meter data management for
the electricity market,” in Proc. Int. Conf. Probab. Methods Appl. Power
Syst., 2004, pp. 118–122.

[20] G. Mateos and G. B. Giannakis, “Load curve data cleansing and impu-
tation via sparsity and low rank,” IEEE Trans. Smart Grid, vol. 4, no. 4,
pp. 2347–2355, Dec. 2013.

[21] Y. Ang, Y. Qian, and S. Gao, “Factory energy data imputation by nearest
neighbor search with clustering,” in Proc. IEEE Int. Conf. Adv. Elect.
Eng. Comput. Appl. (AEECA), Aug. 2020, pp. 302–307.

[22] C. E. Borges, O. Kamara-Esteban, T. Castillo-Calzadilla,
C. M. Andonegui, and A. Alonso-Vicario, “Enhancing the miss-
ing data imputation of primary substation load demand records,”
Sustain. Energy Grids Netw., vol. 23, Sep. 2020, Art. no. 100369.

[23] D. Dua and C. Graff. (2019). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] Y. Gao, B. Foggo, and N. Yu, “A physically inspired data-driven model
for electricity theft detection with smart meter data,” IEEE Trans. Ind.
Informat., vol. 15, no. 9, pp. 5076–5088, Sep. 2019.

[25] J. Shi, Y. Liu, and N. Yu, “Spatio–temporal modeling of electric loads,”
in Proc. North Amer. Power Symp. (NAPS), 2017, pp. 1–6.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

