60 research outputs found

    Cytology-based Cancer Surgery of the Head and Neck (CyCaS-HN): a prospective, randomized, controlled clinical trial

    Get PDF
    Purpose Liquid-based cytology (LBC) is routinely used in gynecology but is rarely applied in head and neck oncology though many suspicious lesions are easily accessible. While several studies have evaluated the potential use of LBC for early detection and molecular characterization of head and neck squamous cell carcinomas (HNSCCs), no study investigated its potential role in surgical management and therapy planning so far. Methods Twenty-fve patients with cT1-2 squamous cell carcinomas of the oral cavity and oropharynx were prospectively enrolled in this study and were randomized to two treatment arms: in the control arm, a diagnostic panendoscopy with incisional biopsy was followed by a second operation with transoral tumor resection±neck dissection and tracheostomy. In the intervention arm, patients underwent LBC diagnostics and in case of a positive result received one single operation with panendoscopy and incisional biopsy for confrmation of LBC result by rapid section histology followed by transoral tumor resection±neck dissection and tracheostomy in the same session. Results Time between clinical diagnosis and defnitive surgical treatment was signifcantly shorter in the intervention group compared with the control group (p<0.0001). Additionally, time of hospitalization (p<0.0001) and cumulative operation time (p=0.062) were shorter in the intervention group. No signifcant diferences in overall, progression-free, and diseasespecifc survival were observed. Conclusion Cytology-based cancer surgery is a promising therapeutic strategy that can potentially be considered for a well-defned group of early-stage HNSCC patients and help to avoid repetitive general anesthesia, shorten the diagnosis-totreatment interval and spare operation as well as hospitalization time

    HPV Status as Prognostic Biomarker in Head and Neck Cancer—Which Method Fits the Best for Outcome Prediction?

    Get PDF
    The incidence of human papillomavirus (HPV)-related head and neck cancer (HNSCC) is rising globally, presenting challenges for optimized clinical management. To date, it remains unclear which biomarker best reflects HPV-driven carcinogenesis, a process that is associated with better therapeutic response and outcome compared to tobacco/alcohol-induced cancers. Six potential HPV surrogate biomarkers were analyzed using FFPE tissue samples from 153 HNSCC patients (n = 78 oropharyngeal cancer (OPSCC), n = 35 laryngeal cancer, n = 23 hypopharyngeal cancer, n = 17 oral cavity cancer): p16, CyclinD1, pRb, dual immunohistochemical staining of p16 and Ki67, HPV-DNA-PCR, and HPV-DNA-in situ hybridization (ISH). Biomarkers were analyzed for correlation with one another, tumor subsite, and patient survival. P16-IHC alone showed the best performance for discriminating between good (high expression) vs poor outcome (low expression; p = 0.0030) in OPSCC patients. Additionally, HPV-DNA-ISH (p = 0.0039), HPV-DNA-PCR (p = 0.0113), and p16-Ki67 dual stain (p = 0.0047) were significantly associated with prognosis in uniand multivariable analysis for oropharyngeal cancer. In the non-OPSCC group, however, none of the aforementioned surrogate markers was prognostic. Taken together, P16-IHC as a single biomarker displays the best diagnostic accuracy for prognosis stratification in OPSCC patients with a direct detection of HPV-DNA by PCR or ISH as well as p16-Ki67 dual stain as potential alternatives

    Towards a consistent mechanism of emulsion polymerization—new experimental details

    Get PDF
    The application of atypical experimental methods such as conductivity measurements, optical microscopy, and nonstirred polymerizations to investigations of the ‘classical’ batch ab initio emulsion polymerization of styrene revealed astonishing facts. The most important result is the discovery of spontaneous emulsification leading to monomer droplets even in the quiescent styrene in water system. These monomer droplets with a size between a few and some hundreds of nanometers, which are formed by spontaneous emulsification as soon as styrene and water are brought into contact, have a strong influence on the particle nucleation, the particle morphology, and the swelling of the particles. Experimental results confirm that micelles of low-molecular-weight surfactants are not a major locus of particle nucleation. Brownian dynamics simulations show that the capture of matter by the particles strongly depends on the polymer volume fraction and the size of the captured species (primary free radicals, oligomers, single monomer molecules, or clusters)

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Poesie im I. Schuljahr

    No full text
    • 

    corecore