29 research outputs found

    Underwater 3D measurements with advanced camera modelling

    Get PDF
    A novel concept of camera modelling for underwater 3D measurements based on stereo camera utilisation is introduced. The geometrical description of the ray course subject to refraction in underwater cameras is presented under assumption of conditions, which are typically satisfied or can be achieved approximately. Possibilities of simplification are shown, which allow an approximation of the ray course by classical pinhole modelling. It is shown how the expected measurement errors can be estimated, as well as its influence on the expected 3D measurement result. Final processing of the 3D measurement data according to the requirements regarding accuracy is performed using several kinds of refinement. For example, calibration parameters can be refined, or systematic errors can be decreased by subsequent compensation by suitable error correction functions. Experimental data of simulations and real measurements obtained by two different underwater 3D scanners are presented and discussed. If inverse image magnification is larger than about one hundred, remaining errors caused by refraction effects can be usually neglected and the classical pinhole model can be used for stereo camera-based underwater 3D measurement systems

    A New Sensor System for Accurate 3D Surface Measurements and Modeling of Underwater Objects

    Get PDF
    Featured Application A potential application of the work is the underwater 3D inspection of industrial structures, such as oil and gas pipelines, offshore wind turbine foundations, or anchor chains. Abstract A new underwater 3D scanning device based on structured illumination and designed for continuous capture of object data in motion for deep sea inspection applications is introduced. The sensor permanently captures 3D data of the inspected surface and generates a 3D surface model in real time. Sensor velocities up to 0.7 m/s are directly compensated while capturing camera images for the 3D reconstruction pipeline. The accuracy results of static measurements of special specimens in a water basin with clear water show the high accuracy potential of the scanner in the sub-millimeter range. Measurement examples with a moving sensor show the significance of the proposed motion compensation and the ability to generate a 3D model by merging individual scans. Future application tests in offshore environments will show the practical potential of the sensor for the desired inspection tasks

    GOBO projection for 3D measurements at highest frame rates: a performance analysis

    Get PDF
    Aperiodic sinusoidal patterns that are cast by a GOBO (GOes Before Optics) projector are a powerful tool for optically measuring the surface topography of moving or deforming objects with very high speed and accuracy. We optimised the first experimental setup that we were able to measure inflating car airbags at frame rates of more than 50 kHz while achieving a 3D point standard deviation of ~500 µm. Here, we theoretically investigate the method of GOBO projection of aperiodic sinusoidal fringes. In a simulation-based performance analysis, we examine the parameters that influence the accuracy of the measurement result and identify an optimal pattern design that yields the highest measurement accuracy. We compare the results with those that were obtained via GOBO projection of phase-shifted sinusoidal fringes. Finally, we experimentally verify the theoretical findings. We show that the proposed technique has several advantages over conventional fringe projection techniques, as the easy-to-build and cost-effective GOBO projector can provide a high radiant flux, allows high frame rates, and can be used over a wide spectral range

    Compact handheld fringe projection based underwater 3D-scanner

    Get PDF
    A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 μm. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented

    Mobile 3D sensor for documenting maintenance processes of large complex structures

    Get PDF
    With the new handheld goSCOUT3D sensor system, the entire surface of complex industrial machinery spanning several meters can be captured three-dimensionally within a matter of minutes. In addition, a comprehensive photo collection is registered and precisely assigned to the corresponding 3D object points in one hybrid 2D/3D model. At the basis of the robust 3D digitization are the measuring principles of photogrammetric reconstruction using a high-resolution color camera and simultaneous localization and imaging using a tracking unit. Following image acquisition, the process leading to generation of the complete hybrid model is fully automated. Under continuous movement of the sensor head, up to six images per second and a total of up to several thousand images can be recorded. Those images are then aligned in 3D space and used to reconstruct the 3D model. Results regarding accuracy measurements are presented as well as application examples of digitized technical machinery under maintenance and inspection

    5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light

    Get PDF
    Measuring the shape (coordinates x, y, z ) and spectral characteristics (wavelength-dependent reflectance R (λi)) of macroscopic objects as a function of time (t) is of great interest in areas such as medical imaging, precision agriculture, or optical sorting. Here, we present an approach that allows to determine all these quantities with high resolution and accuracy, enabling measurement in five dimensions. We call this approach 5D hyperspectral imaging. We describe the design and implementation of a 5D sensor operating in the visible to near-infrared spectral range, which provides excellent spatial and spectral resolution, great depth accuracy, and high frame rates. The results of various experiments strongly indicate the great benefit of the new technology
    corecore