5 research outputs found

    Multi-Height Extraction of Clinical Parameters Improves Classification of Craniosynostosis

    Get PDF
    Introduction: 3D surface scan-based diagnosis of craniosynostosis is a promising radiation-free alternative to traditional diagnosis using computed tomography. The cranial index (CI) and the cranial vault asymmetry index (CVAI) are well-established clinical parameters that are widely used. However, they also have the benefit of being easily adaptable for automatic diagnosis without the need of extensive preprocessing. Methods: We propose a multi-height-based classification approach that uses CI and CVAI in different height layers and compare it to the initial approach using only one layer. We use ten-fold cross-validation and test seven different classifiers. The dataset of 504 patients consists of three types of craniosynostosis and a control group consisting of healthy and non-synostotic subjects. Results: The multi-height-based approach improved classification for all classifiers. The k-nearest neighbors classifier scored best with a mean accuracy of 89 % and a mean F1-score of 0.75. Conclusion: Taking height into account is beneficial for the classification. Based on accepted and widely used clinical parameters, this might be a step towards an easy-to-understand and transparent classification approach for both physicians and patients

    Generative-Adversarial-Network-Based Data Augmentation for the Classification of Craniosynostosis

    Get PDF
    Craniosynostosis is a congenital disease characterized by the premature closure of one or multiple sutures of the infant’s skull. For diagnosis, 3D photogrammetric scans are a radiation-free alternative to computed tomography. However, data is only sparsely available and the role of data augmentation for the classification of craniosynostosis has not yet been analyzed. In this work, we use a 2D distance map representation of the infants’ heads with a convolutional-neural-network-based classifier and employ a generative adversarial network (GAN) for data augmentation. We simulate two data scarcity scenarios with 15% and 10% training data and test the influence of different degrees of added synthetic data and balancing underrepresented classes. We used total accuracy and F1-score as a metric to evaluate the final classifiers. For 15% training data, the GAN-augmented dataset showed an increased F1-score up to 0.1 and classification accuracy up to 3 %. For 10% training data, both metrics decreased. We present a deep convolutional GAN capable of creating synthetic data for the classification of craniosynostosis. Using a moderate amount of synthetic data using a GAN showed slightly better performance, but had little effect overall. The simulated scarcity scenario of 10% training data may have limited the model’s ability to learn the underlying data distribution

    Multi-Height Extraction of Clinical Parameters Improves Classification of Craniosynostosis

    No full text
    Introduction: 3D surface scan-based diagnosis of craniosynostosis is a promising radiation-free alternative to traditional diagnosis using computed tomography. The cranial index (CI) and the cranial vault asymmetry index (CVAI) are well-established clinical parameters that are widely used. However, they also have the benefit of being easily adaptable for automatic diagnosis without the need of extensive preprocessing. Methods: We propose a multi-height-based classification approach that uses CI and CVAI in different height layers and compare it to the initial approach using only one layer. We use ten-fold cross-validation and test seven different classifiers. The dataset of 504 patients consists of three types of craniosynostosis and a control group consisting of healthy and non-synostotic subjects. Results: The multi-height-based approach improved classification for all classifiers. The k-nearest neighbors classifier scored best with a mean accuracy of 89% and a mean F1-score of 0.75. Conclusion: Taking height into account is beneficial for the classification. Based on accepted and widely used clinical parameters, this might be a step towards an easy-to-understand and transparent classification approach for both physicians and patients

    A statistical shape model of craniosynostosis patients and 100 model instances of each pathology

    No full text
    <p>This dataset is part of the publication "A statistical shape model for radiation-free assessment and classification of craniosynostosis" (M. Schaufelberger et al.).  It includes several 3D head models constructed of surface scans of craniosynostosis patients: The full shape model, a texture model, and submodels of four classes: sagittal suture fusion (scaphocephaly), metopic suture fusion (trigonocephaly), coronal suture fusion (brachycephaly and anterior plagiocephaly), and a control model (normocephaly and positional plagiocephaly).  Each of the models is available in an .h5 file.  We also include 100 mesh instances as a .ply file in a zip file.  The model's statistical information can be incorporated into the [Liverpool-York child head model (Dai et al. 2019)](https://doi.org/10.1007/s11263-019-01260-7) as it uses the same vertex order and IDs (starting from index 0).  If you want to synthesize new models, take a look a the demo.py file.  For information about the hierarchy in the h5-file, take a look at documentation.md.</p&gt

    Impact of data synthesis strategies for the classification of craniosynostosis

    No full text
    IntroductionPhotogrammetric surface scans provide a radiation-free option to assess and classify craniosynostosis. Due to the low prevalence of craniosynostosis and high patient restrictions, clinical data are rare. Synthetic data could support or even replace clinical data for the classification of craniosynostosis, but this has never been studied systematically.MethodsWe tested the combinations of three different synthetic data sources: a statistical shape model (SSM), a generative adversarial network (GAN), and image-based principal component analysis for a convolutional neural network (CNN)–based classification of craniosynostosis. The CNN is trained only on synthetic data but is validated and tested on clinical data.ResultsThe combination of an SSM and a GAN achieved an accuracy of 0.960 and an F1 score of 0.928 on the unseen test set. The difference to training on clinical data was smaller than 0.01. Including a second image modality improved classification performance for all data sources.ConclusionsWithout a single clinical training sample, a CNN was able to classify head deformities with similar accuracy as if it was trained on clinical data. Using multiple data sources was key for a good classification based on synthetic data alone. Synthetic data might play an important future role in the assessment of craniosynostosis
    corecore