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Abstract: Craniosynostosis is a congenital disease character-
ized by the premature closure of one or multiple sutures of the
infant’s skull. For diagnosis, 3D photogrammetric scans are a
radiation-free alternative to computed tomography. However,
data is only sparsely available and the role of data augmenta-
tion for the classification of craniosynostosis has not yet been
analyzed.
In this work, we use a 2D distance map representation of
the infants’ heads with a convolutional-neural-network-based
classifier and employ a generative adversarial network (GAN)
for data augmentation. We simulate two data scarcity scenar-
ios with 15 % and 10 % training data and test the influence of
different degrees of added synthetic data and balancing under-
represented classes. We used total accuracy and F1-score as a
metric to evaluate the final classifiers.
For 15 % training data, the GAN-augmented dataset showed
an increased F1-score up to 0.1 and classification accuracy up
to 3 %. For 10 % training data, both metrics decreased.
We present a deep convolutional GAN capable of creating
synthetic data for the classification of craniosynostosis. Us-
ing a moderate amount of synthetic data using a GAN showed
slightly better performance, but had little effect overall. The
simulated scarcity scenario of 10 % training data may have
limited the model’s ability to learn the underlying data dis-
tribution.
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1 Introduction

Craniosynostosis is a congenital condition characterized by
premature ossification of skull sutures and has been linked to
increased intracranial pressure which can lead to reduced neu-
ropsychological development. The reported prevalence is four
cases per 10,000 live births [1]. As the growth perpendicular
to the closed suture is significantly decreased, craniosynosto-
sis is accompanied by characteristic head shapes. Early diag-
nosis is crucial for surgical treatment with computed tomogra-
phy being the gold standard for diagnosis exposing the child
to harmful ionizing radiation. 3D stereophotogrammetry is a
radiation-free alternative to quantify the head shape and can
be used as the basis to distinguish craniosynostosis patients
from healthy subjects or mild positional head deformities.

A common problem when working with clinical data
is the imbalance and the limited amount of available data.
This might hamper the performance of machine learning ap-
proaches which often need large datasets for robust classifi-
cation. Generative models such as generative adversarial net-
works (GANs) have shown to improve the classification per-
formance in medical applications and have been suggested
(but not implemented) for craniosynostosis as well [2].

By expanding on a convolutional neural network (CNN)-
based classifier for craniosynostosis, we construct a deep con-
volutional GAN to create synthetic samples and test the data-
augmented classifier in a scarce training scenario. To the best
of our knowledge, this is the first GAN employed specifically
for craniosynostosis. We perform several test cases addressing
dataset imbalance and limited data availability and evaluate
the data-augmented classifier using accuracy and F1-score.

2 Methods

2.1 Dataset and distance map creation

The dataset was provided by the Department of Oral and Max-
illofacial Surgery from the Heidelberg University Hospital. It
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consists of 367 photogrammetric scans of subjects with cran-
iosynostosis and a control group. The age distribution and the
number of cases for each class is shown in Figure 1.

Fig. 1: Age distributions of the clinical dataset. Parentheses indi-

cate the number of samples per class.

To enable a CNN-based classification, we used a ray cast-
ing approach [2] on the 3D scans and converted the distances
to a 2D image [5]. We defined a center point using anatom-
ical landmarks annotated by clinical experts and defined two
angle directions similar to the horizontal coordinate system.
We defined the azimuth angle φ in the interval [0, 360◦] and
the altitude angle θ in the interval [0, 90◦], describing a semi-
sphere. The angles formed the axes of the 2D image, while the
extracted distances were extracted as an intensity value as rep-
resented in Figure2. We refer to [7] for an in-depth description
of this method.

Fig. 2: Representation of the creation of a 2D distance map.

2.2 Generative adversarial network

GANs [3] are based on a zero-sum game. The game has two
players, the generator G, producing synthetic samples, and the
discriminator D, distinguishing between synthetic samples and

real samples. G creates new data by sampling from a noise
vector z that follows a uniform or Gaussian distribution. As
G improves, the generator distribution Pg should match the
distribution of the real data Pr and produce more and more
realistic images.

We used a deep convolutional generative adversarial net-
work (DCGAN), displayed in Figure3. It is an adaptation of
the work of [6], only changing the number of layers to match
the input of an image with the size of 224 × 224, which is the
input size of the ResNet18. For D, this was achieved by adding
an entire layer. It can be hard to find the Nash-equilibrium
that solves the minimax game as proposed by [3] as GANs are
known to be rather sensitive with respect to the hyperparame-
ters. To partially avoid the problem, the Wasserstein distance
was used in combination with a gradient penalty that enforced
convergence as proposed by [4] which punished high gradients
and forced D to a part of a set of K-Lipschitz functions. This
resulted in the following minimax game:

(1)
min
G

max
D ∈W

V (D,G) = Ex∼Pr
[D(x)]− Ex∼Pg

[D(x)]

− λGPEẋ∼Pẋ
[||∇D(ẋ)||2 − 1)2]

λGP is the hyperparameter that punishes high gradients
and ẋ is a value interpolated from generated and real samples.
This interpolation could be described with the following equa-
tion:

ẋ = t · xr + (1− t) · xg
with t ∼ U(0, 1),

xr ∼ Pr

and xg ∼ Pg

(2)

Instead of training a GAN for each group, we used a con-
ditional GAN as the overall shape of the head is similar in
the sense that it is close to a semi-ellipsoid. The conditional
part was implemented by using an embedding marked as red
in Figure3. In the case of G, the additional information was
added by appending the embedding to the noise vector z. For
D, this was achieved by adding an entire layer. The conditional
GAN was trained with the hyperparameters in Table 1. New
2D images could then be created by sampling a noise vector
based on the Gaussian distribution and by providing the label
of the desired image.

2.3 Test scenarios

To ensure that we were in a case of data scarcity and to test
what could be achievable with more data, the ratio between
training and test data was gradually increased in favor of the
test data. We defined data scarcity as the point when the overall
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Fig. 3: Conditional DCGAN used for the sampling of synthetic data trained with the original maps.

Tab. 1: Hyperparameters for the training of the DCGAN

Gradient penalty λGP = 10

Iteration used to train the discriminator 10

Batch-size 10

Number of epochs 50

Size of the noise vector z 100

Optimizer discriminator Adam(β1 = 0, β2 = 0.9)

Learning rate 10−4

performance decreased substantially compared to the starting
ratio of 80 % training and 20 % test data. For the classification,
we chose a ResNet18 model pretrained on ImageNet with the
hyperparameters listed in Table 2.

Tab. 2: CNN hyperparameters for the classification of 2D maps.

Training approach Fine-tuning of pre-trained Resnet18

Optimizer Adam

Learning rate α = 2 · 10−3

Weight decay γ = 10−4

Number of epochs n = 150

We defined four experiments to evaluate how synthetic
images in the scenario of data scarcity for data augmentation
affected the CNN-classifier. The tests are summarized in Table
3. The first two experiments added data proportional to exist-
ing data, assuming that the dataset did not need to be balanced
in order to achieve a better classification performance. The last
two scenarios focused on balancing the dataset with different
amounts of synthetic data. As evaluation criteria we used over-
all accuracy and F1-score to explicitly take into account the
imbalance of the dataset.

Tab. 3: Summary of the four test scenarios during data scarcity.

Test scenario Description
Moderately

augmented

Add 100 % synthetic images to each class for

a similar number of synthetic and real data.

Highly

augmented

Add 1000 % synthetic images to each class to

have mostly synthetic data.

Balanced
Balance the dataset, without adding synthetic

images to the most frequent class.

Balanced and

augmented

Increase the maximum number of images to

ten times the number of images in the most

represented class and balance the dataset.

3 Results

The final accuracy for each split and the F1-score is displayed
in Figure 4. The strongest drop in the two metrics could be
observed for 85 %. Thus we assumed the case of data scarcity
for a ratio of 85 % test data and considered the case of 90 %
test data as a severe case of data scarcity. It should be noted
that in all scenarios the accuracy was above 80 %.

Fig. 4: Mean accuracies and F1-scores for different ratios of test

data. Displayed is the mean for three trials.
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We show exemplary synthetic images from the DCGAN
in Figure 5. The images resembled images from clinical data
with additional high-frequency noise.

control coronal metopic sagittal

Fig. 5: Synthetic distance maps of the four classes.

The data augmentation results for the four tests are shown
in Table 4. For 85 % test data, F1-score increased when adding
synthetic data. Accuracy also increased with the only excep-
tion for the moderately augmented case. For 90 % test data the
addition of synthetic data decreased the F1-score for all sce-
narios. Overall, accuracy changes were smaller than 5 % and
F1-scores 0.1 or below.

Tab. 4: Mean test scenario results after 150 epochs and three tri-

als. Green indicates an increased, red a decreased performance.

F1 Acc

85 0.71 0.861
Reference

90 0.79 0.869

Moderately augmented 85 0.81 0.854

(Additional 100% images per class) 90 0.77 0.872

Highly augmented 85 0.77 0.888

(Additional 1000% images per class) 90 0.75 0.812

Balanced 85 0.82 0.873

Images per class: max(largest class) 90 0.77 0.848

Balanced and augmented 85 0.73 0.879

Images per class: max(largest class)·10 90 0.75 0.854

4 Discussion

We presented a DCGAN trained for data augmentation with
respect to the classification of craniosynostosis which is capa-
ble of synthesizing images with predefined class labels. The
images resemble different classes of clinical data with the ad-
dition of high-frequency noise which is typical for GANs.

We defined a sparse test scenario and defined four test
cases to evaluate the effect of the GAN-based data augmen-
tation with respect to the classifier. The test cases revealed that
overall the data augmentation had little effect on the classi-
fier. For the 85 % test case, data augmentation had a slightly
positive effect on accuracy and F1-score. Specifically balanc-

ing the dataset did not show an improvement compared with
class-proportional data augmentation. For 90 %, data augmen-
tation decreased classification performance. We assume that
the small amount of data to the train the generative models
which might not have been enough to be able to correctly rep-
resent the key components important for the classifier.

While the synthesized images visually meet the expecta-
tions, the main limitation of this study is the small dataset.
More experimental validation is necessary.

Future work might be related to include a statistical shape
model based for data augmentation. With a combined data
augmentation strategy, it might be possible to also include rare
pathologies such as lambdoid synostosis for the classification.
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