1,694 research outputs found

    Against Bureaucracy. Why Flexibility and Decentralisation Cannot Solve Organisational Problems

    Get PDF
    Kühl S, Dittrich EJ. Against Bureaucracy. Why Flexibility and Decentralisation Cannot Solve Organisational Problems. In: Makó C, Warhurst C, eds. The Management and Organisation of Firms in the Global Context. Budapest: University of Gödöllo; 1999: 119-125

    Monte Carlo modeling of photon propagation reveals highly scattering coral tissue

    Get PDF
    Corals are very efficient at using solar radiation, with photosynthetic quantum efficiencies approaching theoretical limits. Here, we investigated potential mechanisms underlying such outstanding photosynthetic performance through extracting inherent optical properties of the living coral tissue and skeleton in a massive faviid coral. Using Monte Carlo simulations developed for medical tissue optics it is shown that for the investigated faviid coral, the coral tissue was a strongly light scattering matrix with a reduced scattering coefficient of µs’ =10 cm-1 (at 636 nm). In contrast, the scattering coefficient of the coral skeleton was µs’ =3.4 cm-1, which facilitated the efficient propagation of light to otherwise shaded coral tissue layers, thus supporting photosynthesis in lower tissues. Our study provides a quantification of coral tissue optical properties in a massive faviid coral and suggests a novel light harvesting strategy, where tissue and skeletal optics act in concert to optimize the illumination of the photosynthesizing algal symbionts embedded within the living coral tissue

    Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight

    Get PDF
    Limb measurements provided by the SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale, among them BrO for the first time. For limb observations in the UV/VIS spectral region the instrument measures scattered light with a complex distribution of light paths: the light is measured at different tangent heights and can be scattered or absorbed in the atmosphere or reflected by the ground. By means of spectroscopy and radiative transfer modelling these measurements can be inverted to retrieve the vertical distribution of stratospheric trace gases. <br></br> The fully spherical 3-D Monte Carlo radiative transfer model "Tracy-II" is applied in this study. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3-D properties, which is important for a realistic description of the limb geometry. Furthermore it allows accounting for horizontal gradients in the distribution of trace gases. <br></br> In this study the effect of horizontally inhomogeneous distributions of trace gases along flight/viewing direction on the retrieval of profiles is investigated. We introduce a tomographic method to correct for this effect by combining consecutive limb scanning sequences and utilizing the overlap in their measurement sensitivity regions. It is found that if horizontal inhomogenity is not properly accounted for, typical errors of 20% for NO<sub>2</sub> and up to 50% for OClO around the altitude of the profile peak can arise for measurements close to the Arctic polar vortex boundary in boreal winter

    Extending differential optical absorption spectroscopy for limb measurements in the UV

    Get PDF
    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. <br><br> For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. <br><br> However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. <br><br> We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself. <br><br> This new approach provides a description of the SCD the exactness of which depends on the order of the Taylor expansion, and is independent from any assumptions or a priori knowledge of the considered absorbers. <br><br> In case studies of simulated and measured spectra in the UV range (332–357 nm), we demonstrate the improvement by this approach for the retrieval of vertical profiles of BrO from the SCIAMACHY limb observations. The results for BrO obtained from the simulated spectra are closer to the true profiles, when applying the new method for the SCDs of ozone, than when the standard DOAS approach is used. For the measured spectra the agreement with validation measurements is also improved significantly, especially for cases with strong ozone absorption. <br><br> While the focus of this article is on the improvement of the BrO profile retrieval from the SCIAMACHY limb measurements, the novel approach may be applied to a wide range of DOAS retrievals

    Benthic microalgal production in the Arctic: Applied methods and status of the current database

    Full text link
    The current database on benthic microalgal production in Arctic waters comprises 10 peer-reviewed and three unpublished studies. Here, we compile and discuss these datasets, along with the applied measurement approaches used. The latter is essential for robust comparative analysis and to clarify the often very confusing terminology in the existing literature. Our compilation demonstrates that i) benthic microalgae contribute significantly to coastal ecosystem production in the Arctic, and ii) benthic microalgal production on average exceeds pelagic productivity by a factor of 1.5 for water depths down to 30 m. We have established relationships between irradiance, water depth and benthic microalgal productivity that can be used to extrapolate results from quantitative experimental studies to the entire Arctic region. Two different approaches estimated that current benthic microalgal production in the Arctic is between 1.1 and 1.6×107 tons C year-1. Climate change is expected to increase the overall primary production and affect the balance between pelagic and benthic productivity in the Arctic. It is therefore imperative to get better quantitative understanding of the relationship between increased freshwater run-off, shrinking sea-ice cover, light availability and benthic primary production to assess future impact on the Arctic food web and trophic coupling. © 2009 by Walter de Gruyter

    Removal of Tetramethylammonium Cations from Zeolites

    Get PDF
    Zeolite α (high-silica LTA), a potential shape-selective catalyst, is synthesized in the presence of tetramethylammonium (TMA) ions. Since TMA+ ions are incapable of forming olefins at low temperature, temperatures in excess of 500ºC are required to thermally decompose them and burn off the carbonaceous deposits, frequently causing damage to the structure. In this paper, the thermal decomposition of zeolitic TMA+ ions is investigated. This work led to a less severe method for removing TMA+ ions by stepwise reaction with ammonia at low temperatures. TMA+ ions located in the supercage can easily be removed at a temperature as low as 250ºC, generating mono- and dimethylamine. Sodalite cage TMA+ ions require a temperature of not more than 400ºC to be degraded. Although this treatment raises the Si/Al ratio somewhat, damage to the structure is minimal. Since the size of the zeolitic pores defines the type of molecules capable of escaping from the zeolite cavities, decomposition of TMA+ ions in NaTMA-Y and NaTMA-high-silica sodalite have been included for comparison

    An Examination of Brønsted-Acid Sites in H-[Fe]ZSM-5 for Olefin Oligomerization and Adsorption

    Get PDF
    The adsorption and reaction properties of an Al-free H-[Fe]ZSM-5 were examined and compared to an H-[Al]ZSM-5 sample with the same site density. H-[Fe]ZSM-5 was shown to have Brønsted-acid sites in a concentration equal to the framework Fe concentration. Differential heats of adsorption for ammonia and pyridine were shown to be identical to that obtained in H-[Al]ZSM-5, with differential heats of ~150 kJ/mol for ammonia and 200 kJ/mol for pyridine. For H-[Al]ZSM-5, adsorption of either propylene or 1-butene at room temperature results in rapid oligomerization. TPD-TGA measurements of the oligomers in H-[Al]ZSM-5 show evidence for hydride-transfer reactions, in addition to simple oligomer cracking. By contrast, it is necessary to heat H-[Fe]ZSM-5 to 370 K for rapid oligomerization of propylene and oligomerization of 1-butene occurs only slowly at 295 K. TPD-TGA measurements of the oligomers in H-[Fe]ZSM-5 show no evidence for hydride-transfer reactions and H-[Fe]ZSM-5 forms much less coke than H-[Al]ZSM-5 during steady-state reaction in 1-butene at 573 K. Adsorption measurements of 1-butene on D-[Fe]ZSM-5 suggest that the protonated complexes of 1-butene are formed but that these are relatively stable towards reaction, implying that the carbocation transition states are relatively unstable
    • …
    corecore