9 research outputs found

    A Physical X-Ray Scintillator Detector Model for CBCT Imaging Applications

    No full text

    Biological Laboratory X-Ray Microscopy

    No full text
    Soft x-ray microscopy in the water window ( ≈ 2.3 − 4.3 nm) is a powerful technique for high-resolution biological imaging. The strong natural contrast between carbon-based structures and water allows visualization of hydrated and unstained samples, while providing enough transmission through up to ∌ 10 ÎŒm of organic matter. Furthermore, the full potential of this technique can be exploited by performing computed tomography, thus obtaining a complete 3D image of the object. Routine short-exposure water-window microscopy of whole cells and tissue is currently performed at synchrotron-radiation facilities around the world, but with a limited accessibility to the wider research community. For this reason, laboratory-based systems have been developed, which are now reaching maturity. The benefits compared to the synchrotron-based instruments include easier integration with complementary methods in the home laboratory, in addition to the increased access that allows for the often time-consuming optimization of experimental parameters as well as longitudinal studies. This Thesis presents recent developments of the Stockholm laboratory x-ray microscope as well as several biological applications. Work has been done on improving the mechanical and thermal stability of the microscope, resulting in a resolution of 25 nm (half period) in images of test targets. The biological applications were enabled by a significantly increased x-ray flux through the system as well as an improved operational stability. This work demonstrates 10-second exposure imaging of whole cryofixed cells, imaging of viral infections in cells, and 20 minutes total exposure cryotomography.Röntgenmikroskopi i vattenfönstret ( ≈ 2.3−4.3 nm) Ă€r en kraftfull metodför högupplöst biologisk avbildning. Den naturligt höga kontrasten mellankolbaserade strukturer och vatten möjliggör visualisering av prover i ettnĂ€stintill opĂ„verkat tillstĂ„nd, och ger samtidigt tillrĂ€cklig transmission genomupp till ∌ 10 ÎŒm organisk materia. Teknikens fulla potential utnyttjasvidare genom datortomografi, vilket resulterar i en fullstĂ€ndig 3D-bild avobjektet.Röntgenmikroskopi i vattenfönstret, av celler och vĂ€vnad och med kortexponeringstid, utförs rutinmĂ€ssigt vid synkrotronljuskĂ€llor runt om i vĂ€rlden,men med begrĂ€nsad tillgĂ€nglighet för forskarsamfundet. Av den anledningenhar laboratoriebaserade system utvecklats, vilka nu börjar nĂ„mognad. Fördelarna jĂ€mfört med synkrotronbaserade instrument bestĂ„r avenklare integrering av komplementĂ€ra laboratoriemetoder, utöver den utökadetillgĂ€ngligheten som tillĂ„ter tidskrĂ€vande optimering av experimentellaparametrar sĂ„vĂ€l som longitudinella studier.Denna avhandling beskriver nyligen utfört arbete för att förbĂ€ttra detkompakta mjukröntgenmikroskopet i Stockholm, samt flera biologiskatillĂ€mpningar. Arbete har gjorts för att förbĂ€ttra mikroskopets mekaniskaoch termiska stabilitet, vilket har resulterat i 25 nm upplösning (halvperiod) i bilder av teststrukturer. De biologiska tillĂ€mpningarna harmöjliggjorts av en markant ökad röntgenintensitet vid provet, sĂ„vĂ€l somförbĂ€ttrad driftsstabilitet. Resultaten som presenteras bestĂ„r, bland annat,av avbildning av kryofixerade hela celler med 10-sekundersexponeringar,avbildning av virusinfektioner i celler och kryotomografi med 20 minuterstotal exponeringtid

    Biological Laboratory X-Ray Microscopy

    No full text
    Soft x-ray microscopy in the water window ( ≈ 2.3 − 4.3 nm) is a powerful technique for high-resolution biological imaging. The strong natural contrast between carbon-based structures and water allows visualization of hydrated and unstained samples, while providing enough transmission through up to ∌ 10 ÎŒm of organic matter. Furthermore, the full potential of this technique can be exploited by performing computed tomography, thus obtaining a complete 3D image of the object. Routine short-exposure water-window microscopy of whole cells and tissue is currently performed at synchrotron-radiation facilities around the world, but with a limited accessibility to the wider research community. For this reason, laboratory-based systems have been developed, which are now reaching maturity. The benefits compared to the synchrotron-based instruments include easier integration with complementary methods in the home laboratory, in addition to the increased access that allows for the often time-consuming optimization of experimental parameters as well as longitudinal studies. This Thesis presents recent developments of the Stockholm laboratory x-ray microscope as well as several biological applications. Work has been done on improving the mechanical and thermal stability of the microscope, resulting in a resolution of 25 nm (half period) in images of test targets. The biological applications were enabled by a significantly increased x-ray flux through the system as well as an improved operational stability. This work demonstrates 10-second exposure imaging of whole cryofixed cells, imaging of viral infections in cells, and 20 minutes total exposure cryotomography.Röntgenmikroskopi i vattenfönstret ( ≈ 2.3−4.3 nm) Ă€r en kraftfull metodför högupplöst biologisk avbildning. Den naturligt höga kontrasten mellankolbaserade strukturer och vatten möjliggör visualisering av prover i ettnĂ€stintill opĂ„verkat tillstĂ„nd, och ger samtidigt tillrĂ€cklig transmission genomupp till ∌ 10 ÎŒm organisk materia. Teknikens fulla potential utnyttjasvidare genom datortomografi, vilket resulterar i en fullstĂ€ndig 3D-bild avobjektet.Röntgenmikroskopi i vattenfönstret, av celler och vĂ€vnad och med kortexponeringstid, utförs rutinmĂ€ssigt vid synkrotronljuskĂ€llor runt om i vĂ€rlden,men med begrĂ€nsad tillgĂ€nglighet för forskarsamfundet. Av den anledningenhar laboratoriebaserade system utvecklats, vilka nu börjar nĂ„mognad. Fördelarna jĂ€mfört med synkrotronbaserade instrument bestĂ„r avenklare integrering av komplementĂ€ra laboratoriemetoder, utöver den utökadetillgĂ€ngligheten som tillĂ„ter tidskrĂ€vande optimering av experimentellaparametrar sĂ„vĂ€l som longitudinella studier.Denna avhandling beskriver nyligen utfört arbete för att förbĂ€ttra detkompakta mjukröntgenmikroskopet i Stockholm, samt flera biologiskatillĂ€mpningar. Arbete har gjorts för att förbĂ€ttra mikroskopets mekaniskaoch termiska stabilitet, vilket har resulterat i 25 nm upplösning (halvperiod) i bilder av teststrukturer. De biologiska tillĂ€mpningarna harmöjliggjorts av en markant ökad röntgenintensitet vid provet, sĂ„vĂ€l somförbĂ€ttrad driftsstabilitet. Resultaten som presenteras bestĂ„r, bland annat,av avbildning av kryofixerade hela celler med 10-sekundersexponeringar,avbildning av virusinfektioner i celler och kryotomografi med 20 minuterstotal exponeringtid

    Biological Laboratory X-Ray Microscopy

    No full text
    Soft x-ray microscopy in the water window ( ≈ 2.3 − 4.3 nm) is a powerful technique for high-resolution biological imaging. The strong natural contrast between carbon-based structures and water allows visualization of hydrated and unstained samples, while providing enough transmission through up to ∌ 10 ÎŒm of organic matter. Furthermore, the full potential of this technique can be exploited by performing computed tomography, thus obtaining a complete 3D image of the object. Routine short-exposure water-window microscopy of whole cells and tissue is currently performed at synchrotron-radiation facilities around the world, but with a limited accessibility to the wider research community. For this reason, laboratory-based systems have been developed, which are now reaching maturity. The benefits compared to the synchrotron-based instruments include easier integration with complementary methods in the home laboratory, in addition to the increased access that allows for the often time-consuming optimization of experimental parameters as well as longitudinal studies. This Thesis presents recent developments of the Stockholm laboratory x-ray microscope as well as several biological applications. Work has been done on improving the mechanical and thermal stability of the microscope, resulting in a resolution of 25 nm (half period) in images of test targets. The biological applications were enabled by a significantly increased x-ray flux through the system as well as an improved operational stability. This work demonstrates 10-second exposure imaging of whole cryofixed cells, imaging of viral infections in cells, and 20 minutes total exposure cryotomography.Röntgenmikroskopi i vattenfönstret ( ≈ 2.3−4.3 nm) Ă€r en kraftfull metodför högupplöst biologisk avbildning. Den naturligt höga kontrasten mellankolbaserade strukturer och vatten möjliggör visualisering av prover i ettnĂ€stintill opĂ„verkat tillstĂ„nd, och ger samtidigt tillrĂ€cklig transmission genomupp till ∌ 10 ÎŒm organisk materia. Teknikens fulla potential utnyttjasvidare genom datortomografi, vilket resulterar i en fullstĂ€ndig 3D-bild avobjektet.Röntgenmikroskopi i vattenfönstret, av celler och vĂ€vnad och med kortexponeringstid, utförs rutinmĂ€ssigt vid synkrotronljuskĂ€llor runt om i vĂ€rlden,men med begrĂ€nsad tillgĂ€nglighet för forskarsamfundet. Av den anledningenhar laboratoriebaserade system utvecklats, vilka nu börjar nĂ„mognad. Fördelarna jĂ€mfört med synkrotronbaserade instrument bestĂ„r avenklare integrering av komplementĂ€ra laboratoriemetoder, utöver den utökadetillgĂ€ngligheten som tillĂ„ter tidskrĂ€vande optimering av experimentellaparametrar sĂ„vĂ€l som longitudinella studier.Denna avhandling beskriver nyligen utfört arbete för att förbĂ€ttra detkompakta mjukröntgenmikroskopet i Stockholm, samt flera biologiskatillĂ€mpningar. Arbete har gjorts för att förbĂ€ttra mikroskopets mekaniskaoch termiska stabilitet, vilket har resulterat i 25 nm upplösning (halvperiod) i bilder av teststrukturer. De biologiska tillĂ€mpningarna harmöjliggjorts av en markant ökad röntgenintensitet vid provet, sĂ„vĂ€l somförbĂ€ttrad driftsstabilitet. Resultaten som presenteras bestĂ„r, bland annat,av avbildning av kryofixerade hela celler med 10-sekundersexponeringar,avbildning av virusinfektioner i celler och kryotomografi med 20 minuterstotal exponeringtid

    Biological Laboratory X-Ray Microscopy

    No full text
    Soft x-ray microscopy in the water window ( ≈ 2.3 − 4.3 nm) is a powerful technique for high-resolution biological imaging. The strong natural contrast between carbon-based structures and water allows visualization of hydrated and unstained samples, while providing enough transmission through up to ∌ 10 ÎŒm of organic matter. Furthermore, the full potential of this technique can be exploited by performing computed tomography, thus obtaining a complete 3D image of the object. Routine short-exposure water-window microscopy of whole cells and tissue is currently performed at synchrotron-radiation facilities around the world, but with a limited accessibility to the wider research community. For this reason, laboratory-based systems have been developed, which are now reaching maturity. The benefits compared to the synchrotron-based instruments include easier integration with complementary methods in the home laboratory, in addition to the increased access that allows for the often time-consuming optimization of experimental parameters as well as longitudinal studies. This Thesis presents recent developments of the Stockholm laboratory x-ray microscope as well as several biological applications. Work has been done on improving the mechanical and thermal stability of the microscope, resulting in a resolution of 25 nm (half period) in images of test targets. The biological applications were enabled by a significantly increased x-ray flux through the system as well as an improved operational stability. This work demonstrates 10-second exposure imaging of whole cryofixed cells, imaging of viral infections in cells, and 20 minutes total exposure cryotomography.Röntgenmikroskopi i vattenfönstret ( ≈ 2.3−4.3 nm) Ă€r en kraftfull metodför högupplöst biologisk avbildning. Den naturligt höga kontrasten mellankolbaserade strukturer och vatten möjliggör visualisering av prover i ettnĂ€stintill opĂ„verkat tillstĂ„nd, och ger samtidigt tillrĂ€cklig transmission genomupp till ∌ 10 ÎŒm organisk materia. Teknikens fulla potential utnyttjasvidare genom datortomografi, vilket resulterar i en fullstĂ€ndig 3D-bild avobjektet.Röntgenmikroskopi i vattenfönstret, av celler och vĂ€vnad och med kortexponeringstid, utförs rutinmĂ€ssigt vid synkrotronljuskĂ€llor runt om i vĂ€rlden,men med begrĂ€nsad tillgĂ€nglighet för forskarsamfundet. Av den anledningenhar laboratoriebaserade system utvecklats, vilka nu börjar nĂ„mognad. Fördelarna jĂ€mfört med synkrotronbaserade instrument bestĂ„r avenklare integrering av komplementĂ€ra laboratoriemetoder, utöver den utökadetillgĂ€ngligheten som tillĂ„ter tidskrĂ€vande optimering av experimentellaparametrar sĂ„vĂ€l som longitudinella studier.Denna avhandling beskriver nyligen utfört arbete för att förbĂ€ttra detkompakta mjukröntgenmikroskopet i Stockholm, samt flera biologiskatillĂ€mpningar. Arbete har gjorts för att förbĂ€ttra mikroskopets mekaniskaoch termiska stabilitet, vilket har resulterat i 25 nm upplösning (halvperiod) i bilder av teststrukturer. De biologiska tillĂ€mpningarna harmöjliggjorts av en markant ökad röntgenintensitet vid provet, sĂ„vĂ€l somförbĂ€ttrad driftsstabilitet. Resultaten som presenteras bestĂ„r, bland annat,av avbildning av kryofixerade hela celler med 10-sekundersexponeringar,avbildning av virusinfektioner i celler och kryotomografi med 20 minuterstotal exponeringtid

    Biological Laboratory X-Ray Microscopy

    No full text
    Soft x-ray microscopy in the water window ( ≈ 2.3 − 4.3 nm) is a powerful technique for high-resolution biological imaging. The strong natural contrast between carbon-based structures and water allows visualization of hydrated and unstained samples, while providing enough transmission through up to ∌ 10 ÎŒm of organic matter. Furthermore, the full potential of this technique can be exploited by performing computed tomography, thus obtaining a complete 3D image of the object. Routine short-exposure water-window microscopy of whole cells and tissue is currently performed at synchrotron-radiation facilities around the world, but with a limited accessibility to the wider research community. For this reason, laboratory-based systems have been developed, which are now reaching maturity. The benefits compared to the synchrotron-based instruments include easier integration with complementary methods in the home laboratory, in addition to the increased access that allows for the often time-consuming optimization of experimental parameters as well as longitudinal studies. This Thesis presents recent developments of the Stockholm laboratory x-ray microscope as well as several biological applications. Work has been done on improving the mechanical and thermal stability of the microscope, resulting in a resolution of 25 nm (half period) in images of test targets. The biological applications were enabled by a significantly increased x-ray flux through the system as well as an improved operational stability. This work demonstrates 10-second exposure imaging of whole cryofixed cells, imaging of viral infections in cells, and 20 minutes total exposure cryotomography.Röntgenmikroskopi i vattenfönstret ( ≈ 2.3−4.3 nm) Ă€r en kraftfull metodför högupplöst biologisk avbildning. Den naturligt höga kontrasten mellankolbaserade strukturer och vatten möjliggör visualisering av prover i ettnĂ€stintill opĂ„verkat tillstĂ„nd, och ger samtidigt tillrĂ€cklig transmission genomupp till ∌ 10 ÎŒm organisk materia. Teknikens fulla potential utnyttjasvidare genom datortomografi, vilket resulterar i en fullstĂ€ndig 3D-bild avobjektet.Röntgenmikroskopi i vattenfönstret, av celler och vĂ€vnad och med kortexponeringstid, utförs rutinmĂ€ssigt vid synkrotronljuskĂ€llor runt om i vĂ€rlden,men med begrĂ€nsad tillgĂ€nglighet för forskarsamfundet. Av den anledningenhar laboratoriebaserade system utvecklats, vilka nu börjar nĂ„mognad. Fördelarna jĂ€mfört med synkrotronbaserade instrument bestĂ„r avenklare integrering av komplementĂ€ra laboratoriemetoder, utöver den utökadetillgĂ€ngligheten som tillĂ„ter tidskrĂ€vande optimering av experimentellaparametrar sĂ„vĂ€l som longitudinella studier.Denna avhandling beskriver nyligen utfört arbete för att förbĂ€ttra detkompakta mjukröntgenmikroskopet i Stockholm, samt flera biologiskatillĂ€mpningar. Arbete har gjorts för att förbĂ€ttra mikroskopets mekaniskaoch termiska stabilitet, vilket har resulterat i 25 nm upplösning (halvperiod) i bilder av teststrukturer. De biologiska tillĂ€mpningarna harmöjliggjorts av en markant ökad röntgenintensitet vid provet, sĂ„vĂ€l somförbĂ€ttrad driftsstabilitet. Resultaten som presenteras bestĂ„r, bland annat,av avbildning av kryofixerade hela celler med 10-sekundersexponeringar,avbildning av virusinfektioner i celler och kryotomografi med 20 minuterstotal exponeringtid

    Quantitative conversion of biomass in giant DNA virus infection

    No full text
    Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle
    corecore