288 research outputs found

    Application of moderate hydrostatic pressure induces unit-cell changes in rhombohedral insulin

    Full text link

    Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

    Get PDF
    The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in 43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of the metastable level as A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the existence of transitions that become independent of the first-order Zeeman shift at non-zero low magnetic fields. These transitions might be better suited for building a frequency standard than the well-known 'clock transitions' between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections to were made to the data analysi

    Odontología mínimamente invasiva. Tratamiento restaurador atraumático

    Get PDF
    El Tratamiento Restaurador Atraumático (TRA), constituye una nueva visión de la odontología. Es una técnica basada en la filosofía de mínima intervención; es decir, mínimamente invasiva y altamente conservadora. Estos tratamientos consisten en eliminar la menor cantidad de tejido dentario, empleando instrumentos manuales y cemento de ionómero de vidrio como material de obturación. Un aspecto clave de la técnica consiste en orientar al paciente en métodos profilácticos y hábitos nutricionales que propicien un cambio en la flora bacteriana de la cavidad bucal, impidiendo la proliferación de agentes patógenos causantes de la caries dental. Su empleo es posible gracias a la asociación entre: los conocimientos acerca de la patología de la caries dental, la efectividad de los métodos preventivos y el desarrollo de materiales restauradores adhesivos que liberan flúor. A pesar de la aparente simplicidad de este procedimiento, es esencial que todas las etapas operatorias y restauradoras sean seguidas, así como la cuidadosa selección de los casos clínicos y manipulación e inserción del material restaurador con el fin de obtener resultados satisfactorios. Este caso clínico procura presentar las etapas clínicas de forma detallada, así como las indicaciones, contraindicaciones, ventajas y limitaciones de la técnica del Tratamiento Restaurador Atraumático (TRA).publishedVersio

    Process tomography of ion trap quantum gates

    Get PDF
    A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this paper, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude--shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates

    Robust entanglement

    Full text link
    It is common belief among physicists that entangled states of quantum systems loose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca+^+ ions and observe robust entanglement lasting for more than 20 seconds

    Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    Full text link
    Wind turbines operate in the atmospheric boundary layer, where they are exposed to the turbulent atmospheric flows. As the response time of wind turbine is typically in the range of seconds, they are affected by the small scale intermittent properties of the turbulent wind. Consequently, basic features which are known for small-scale homogeneous isotropic turbulence, and in particular the well-known intermittency problem, have an important impact on the wind energy conversion process. We report on basic research results concerning the small-scale intermittent properties of atmospheric flows and their impact on the wind energy conversion process. The analysis of wind data shows strongly intermittent statistics of wind fluctuations. To achieve numerical modeling a data-driven superposition model is proposed. For the experimental reproduction and adjustment of intermittent flows a so-called active grid setup is presented. Its ability is shown to generate reproducible properties of atmospheric flows on the smaller scales of the laboratory conditions of a wind tunnel. As an application example the response dynamics of different anemometer types are tested. To achieve a proper understanding of the impact of intermittent turbulent inflow properties on wind turbines we present methods of numerical and stochastic modeling, and compare the results to measurement data. As a summarizing result we find that atmospheric turbulence imposes its intermittent features on the complete wind energy conversion process. Intermittent turbulence features are not only present in atmospheric wind, but are also dominant in the loads on the turbine, i.e. rotor torque and thrust, and in the electrical power output signal. We conclude that profound knowledge of turbulent statistics and the application of suitable numerical as well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201

    Intrafractional dose variation and beam configuration in carbon ion radiotherapy for esophageal cancer

    Get PDF
    Background: In carbon ion radiotherapy (CIR) for esophageal cancer, organ and target motion is a major challenge for treatment planning due to potential range deviations. This study intends to analyze the impact of intrafractional variations on dosimetric parameters and to identify favourable settings for robust treatment plans. Methods: We contoured esophageal boost volumes in different organ localizations for four patients and calculated CIR-plans with 13 different beam geometries on a free-breathing CT. Forward calculation of these plans was performed on 4D-CT datasets representing seven different phases of the breathing cycle. Plan quality was assessed for each patient and beam configuration. Results: Target volume coverage was adequate for all settings in the baseline CIR-plans (V95 > 98% for two-beam geometries, > 94% for one-beam geometries), but reduced on 4D-CT plans (V95 range 50–95%). Sparing of the organs at risk (OAR) was adequate, but range deviations during the breathing cycle partly caused critical, maximum doses to spinal cord up to 3.5x higher than expected. There was at least one beam configuration for each patient with appropriate plan quality. Conclusions: Despite intrafractional motion, CIR for esophageal cancer is possible with robust treatment plans when an individually optimized beam setup is selected depending on tumor size and localization

    Quasiparticle spin susceptibility in heavy-fermion superconductors : An NMR study compared with specific heat results

    Full text link
    Quasi-particle spin susceptibility (χqp\chi^{qp}) for various heavy-fermion (HF) superconductors are discussed on the basis of the experimental results of electronic specific heat (γel\gamma_{el}), NMR Knight shift (KK) and NMR relaxation rate (1/T11/T_1) within the framework of the Fermi liquid model for a Kramers doublet crystal electric field (CEF) ground state. χγqp\chi^{qp}_{\gamma} is calculated from the enhanced Sommerfeld coefficient γel\gamma_{el} and χT1qp\chi^{qp}_{T_1} from the quasi-particle Korringa relation T1T(KT1qp)2=const.T_1T(K^{qp}_{T_1})^2=const. via the relation of χT1qp=(NAμB/Ahf)KT1qp\chi^{qp}_{T_1}=(N_A\mu_B/A_{hf})K^{qp}_{T_1} where AhfA_{hf} is the hyperfine coupling constant, NAN_A the Abogadoro's number and μB\mu_B the Bohr magneton. For the even-parity (spin-singlet) superconductors CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3, the fractional decrease in the Knight shift, δKobs\delta K^{obs}, below the superconducting transition temperature (TcT_c) is due to the decrease of the spin susceptibility of heavy quasi-particle estimated consistently from χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1}. This result allows us to conclude that the heavy quasi-particles form the spin-singlet Cooper pairs in CeCu2_2Si2_2, CeCoIn5_5 and UPd2_2Al3_3. On the other hand, no reduction in the Knight shift is observed in UPt3_3 and UNi2_2Al3_3, nevertheless the estimated values of χγqp\chi^{qp}_{\gamma} and χT1qp\chi^{qp}_{T_1} are large enough to be probed experimentally. The odd-parity superconductivity is therefore concluded in these compounds. The NMR result provides a convincing way to classify the HF superconductors into either even- or odd- parity paring together with the identification for the gap structure, as long as the system has Kramers degeneracy.Comment: 11 pages, 3 tables, 5 figures, RevTex4(LaTex2e
    corecore