4,676 research outputs found

    Magnetic field enhanced structural instability in EuTiO_{3}

    Full text link
    EuTiO_{3} undergoes a structural phase transition from cubic to tetragonal at T_S = 282 K which is not accompanied by any long range magnetic order. However, it is related to the oxygen ocathedra rotation driven by a zone boundary acoustic mode softening. Here we show that this displacive second order structural phase transition can be shifted to higher temperatures by the application of an external magnetic field (increased by 4 K for mu_{0}H = 9 T). This observed field dependence is in agreement with theoretical predictions based on a coupled spin-anharmonic-phonon interaction model.Comment: 4 pages, 4 figure

    Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation

    Get PDF
    The treatment of joint-fractures is a common task in orthopaedic surgery causing considerable health costs and patient disabilities. Percutaneous techniques have been developed to mitigate the problems related to open surgery (e.g. soft tissue damage), although their application to joint-fractures is limited by the sub-optimal intra-operative imaging (2D-fluoroscopy) and by the high forces involved. Our earlier research toward improving percutaneous reduction of intra-articular fractures has resulted in the creation of a robotic system prototype, i.e. RAFS (Robot-Assisted Fracture Surgery) system. We propose a robot-bone attachment device for percutaneous bone manipulation, which can be anchored to the bone fragment through one small incision, ensuring the required stability and reducing the “biological cost” of the procedure. The device has been evaluated through the reduction of 9 distal femur fractures on human cadavers using the RAFS system

    Binaries in star clusters and the origin of the field stellar population

    Get PDF
    Many, possibly most, stars form in binary and higher-order multiple systems. Therefore, the properties and frequency of binary systems provide strong clues to the star-formation process, and constraints on star-formation models. However, the majority of stars also form in star clusters in which the birth binary properties and frequency can be altered rapidly by dynamical processing. Thus, we almost never see the birth population, which makes it very difficult to know if star formation (as traced by binaries, at least) is universal, or if it depends on environment. In addition, the field population consists of a mixture of systems from different clusters which have all been processed in different ways.Comment: 16 pages, no figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 8 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil

    Does elevated atmospheric CO2 allow for sufficient wheat grain quality in the future?

    Get PDF
    To identify future impacts on biomass production and yield quality of important C3 crops, spring wheat was grown in association with 13 weed species in a Mini-FACE (free-air carbon dioxide (CO2) enrichment) system under ambient (375 μl l-1) and elevated (526 μl l-1) CO2 concentrations. Wheat productivity was assessed at maturity and grain yield was subjected to various chemical analyses and baking quality tests.CO2 enrichment acted as carbon ‘fertiliser’ and increased the aboveground biomass production of wheat by 18.8% as there was a trend towards higher stem biomass. Although not statistically significant, wheat grain yield was increased by 13.4% due to a significant establishment of more grains per unit ground area. At the same time, thousand grain weight was non-significantly shifted towards smaller grain size classes, which may result in negative consequences for the crop market value. As a result of the CO2- induced physiological and biochemical modifications, concentration of total grain protein was significantly decreased by 3.5%, reducing the wheat grain quality with potentially far-reaching impacts on the nutritional value and use for processing industry. Although often not significant, the concentrations of amino acids per unit of flour were decreased by 0.2 to 8.3% due to elevated CO2 thereby affecting the composition of proteinogenic amino acids.Furthermore, gluten proteins tended to decline. Within the significant decreased gliadins, α- and ω5-gliadins were significantly reduced under CO2 enrichment; there was also a negative trend for ω1,2- and γ-gliadins. Changes in certain essential minerals were found as well, although not statistically significant. Concentrations of sodium, calcium, phosphorus and sulphur were slightly lowered and those of potassium and magnesium were slightly increased due to CO2 enrichment. The micro-element molybdenum was increased, while concentrations of iron, zinc, copper, manganese and aluminium were decreased. With regard to rheological and baking parameters defining the cereal quality for industrial processing, the resistance of the dough was significantly reduced by about 30%, while the extensibility was non-significantly increased by 17.1% under CO2 enrichment. Moreover, the bread volume was decreased non-significantly by about 9%. Elevated CO2 is obviously affecting grain characteristics important for consumer nutrition and health, industrial processing and marketing. Experimental evidence for these changes is still poor but deserves further attention

    Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets

    Full text link
    We have found the exact groundstate for a large class of antiferromagnetic spin-1 models with nearest-neighbour interactions on a linear chain. All groundstate properties can be calculated. The groundstate is determined as a matrix product of individual site states and has the properties of the Haldane scenario.Comment: 8 pages (plain tex), preprint cologne-93-471

    Towards a fully self-consistent spectral function of the nucleon in nuclear matter

    Get PDF
    We present a calculation of nuclear matter which goes beyond the usual quasi-particle approximation in that it includes part of the off-shell dependence of the self-energy in the self-consistent solution of the single-particle spectrum. The spectral function is separated in contributions for energies above and below the chemical potential. For holes we approximate the spectral function for energies below the chemical potential by a δ\delta-function at the quasi-particle peak and retain the standard form for energies above the chemical potential. For particles a similar procedure is followed. The approximated spectral function is consistently used at all levels of the calculation. Results for a model calculation are presented, the main conclusion is that although several observables are affected by the inclusion of the continuum contributions the physical consistency of the model does not improve with the improved self-consistency of the solution method. This in contrast to expectations based on the crucial role of self-consistency in the proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.

    The evolution of rotating very massive stars with LMC composition

    Get PDF
    We present a dense model grid with tailored input chemical composition appropriate for the Large Magellanic Cloud. We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses of 70-500 Msun and with initial surface rotational velocities of 0-550 km/s, covering the core-hydrogen burning phase of evolution. We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 Msun, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above 150 MZAMS, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum zero-age main sequence surface temperature of 56000 K, at 180 Msun, and to an evolution of stars in the mass range 50-100 Msun to the regime of luminous blue variables in the HR diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above 180 Msun. The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses.Comment: 21 pages, 25 figure

    Generalized Scaling for Models with Multiple Absorbing States

    Full text link
    At a continuous transition into a nonunique absorbing state, particle systems may exhibit nonuniversal critical behavior, in apparent violation of hyperscaling. We propose a generalized scaling theory for dynamic critical behavior at a transition into an absorbing state, which is capable of describing exponents which vary according to the initial configuration. The resulting hyperscaling relation is supported by simulations of two lattice models.Comment: Latex 9 page

    Non-instant collisions and two concepts of quasiparticle

    Full text link
    The kinetic theory recently implemented in heavy ion reactions combines a non-local and non-instant picture of binary collisions with quasiparticle features. We show that the non-instant description is compatible with the spectral concept of quasiparticles while the commonly used variational concept is consistent only with instant collisions. The rearrangement energy, by which the variational concept surpasses the spectral one, is shown to be covered by a medium effect on non-instant collisions.Comment: PRE 59,1 rap. com

    Break up of heavy fermions at an antiferromagnetic instability

    Full text link
    We present results of high-resolution, low-temperature measurements of the Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2. They support earlier conclusions of an electronic (Kondo-breakdown) quantum critical point concurring with a field induced antiferromagnetic one. We also discuss the detachment of the two instabilities under chemical pressure. Volume compression/expansion (via substituting Rh by Co/Ir) results in a stabilization/weakening of magnetic order. Moderate Ir substitution leads to a non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor screened by the Kondo effect. The so-derived zero-temperature global phase diagram promises future studies to explore the nature of the Kondo breakdown quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS
    corecore