116 research outputs found

    Swiss Science Concentrates

    Get PDF

    Swiss Science Concentrates

    Get PDF

    Swiss Science Concentrates

    Get PDF

    Swiss Science Concentrates

    Get PDF

    Swiss Science Concentrates

    Get PDF

    An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

    Get PDF
    Enzymes typically depend on either NAD(P)H or FADH 2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines

    Swiss Science Concentrates

    Get PDF

    Swiss Science Concentrates

    Get PDF
    corecore