334 research outputs found

    Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Get PDF
    Conceptual models suggest that stability of organic carbon (OC) in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organomineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions - fLF, occluded light fractions - oLF, heavy fractions - HF) were analysed for OC, total nitrogen (TN), ÎŽ13C, and Δ14C Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates) as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC) matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age) of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and pos sit tive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and nutrient source for subsurface microorganisms throughout the profile. Declining specific mineralization rates with soil depth confirm greater stability of OC in subsoils across sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining specific mineralization rates with increasing contributions of HF-OC to bulk soil OC, and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. While quantitatively less important than OC in the HF, consistent older ages of oLF-OC than fLF-OC suggest that occlusion of LF-OC in aggregates also contributes to OC stability in subsoils. Overall, our results indicate that association with minerals is the most important factor in stabilization of OC in soils, irrespective of vegetation, soil type, and land use. © Author(s) 2013.European Unio

    Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis.

    Get PDF
    Exposure of rat hippocampal neurons or human D283 medulloblastoma cells to the apoptosis-inducing kinase inhibitor staurosporine induced rapid cytochrome c release from mitochondria and activation of the executioner caspase-3. Measurements of cellular tetramethylrhodamine ethyl ester fluorescence and subsequent simulation of fluorescence changes based on Nernst calculations of fluorescence in the extracellular, cytoplasmic, and mitochondrial compartments revealed that the release of cytochrome c was preceded by mitochondrial hyperpolarization. Overexpression of the anti-apoptotic protein Bcl-xL, but not pharmacological blockade of outward potassium currents, inhibited staurosporine-induced hyperpolarization and apoptosis. Dissipation of mitochondrial potassium and proton gradients by valinomycin or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone also potently inhibited staurosporine-induced hyperpolarization, cytochrome c release, and caspase activation. This effect was not attributable to changes in cellular ATP levels. Prolonged exposure to valinomycin induced significant matrix swelling, and per se also caused release of cytochrome c from mitochondria. In contrast to staurosporine, however, valinomycin-induced cytochrome c release and cell death were not associated with caspase-3 activation and insensitive to Bcl-xL overexpression. Our data suggest two distinct mechanisms for mitochondrial cytochrome c release: (1) active cytochrome c release associated with early mitochondrial hyperpolarization, leading to neuronal apoptosis, and (2) passive cytochrome c release secondary to mitochondrial depolarization and matrix swelling

    Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling

    Get PDF
    We use an empirical model together with experimental measurements for studying mechanisms contributing to thermal rollover in vertical-cavity surface-emitting lasers (VCSELs). The model is based on extraction of the temperature dependence of threshold current, internal quantum efficiency, internal optical loss, series resistance and thermal impedance from measurements of output power, voltage and lasing wavelength as a function of bias current over an ambient temperature range of 15-100 degrees C. We apply the model to an oxide-confined, 850-nm VCSEL, fabricated with a 9-mu m inner-aperture diameter and optimized for highspeed operation, and show for this specific device that power dissipation due to linear power dissipation (sum total of optical absorption, carrier thermalization, carrier leakage and spontaneous carrier recombination) exceeds power dissipation across the series resistance (quadratic power dissipation) at any ambient temperature and bias current. We further show that the dominant contributors to self-heating for this particular VCSEL are quadratic power dissipation, internal optical loss, and carrier leakage. A rapid reduction of the internal quantum efficiency at high bias currents (resulting in high temperatures) is identified as being the major cause of thermal rollover. Our method is applicable to any VCSEL and is useful for identifying the mechanisms limiting the thermal performance of the device and to formulate design strategies to ameliorate them

    Impact of photon lifetime on thermal rollover in 850-nm high-speed VCSELs

    Get PDF
    We present an empirical thermal model for VCSELs based on extraction of temperature dependence of macroscopic VCSEL parameters from CW measurements. We apply our model to two, oxide-confined, 850-nm VCSELs, fabricated with a 9-mu m inner-aperture diameter and optimized for high-speed operation. We demonstrate that for both these devices, the power dissipation due to linear heat sources dominates the total self-heating. We further show that reducing photon lifetime down to 2 ps drastically reduces absorption heating and improves device static performance by delaying the onset of thermal rollover. The new thermal model can identify the mechanisms limiting the thermal performance and help in formulating the design strategies to ameliorate them

    Zwischen Hang und Aue - Kohlenstoffdynamik im Einzugsgebiet des Otterbach

    Get PDF
    Die Nutzung und Umgestaltung der Landschaft durch den Menschen fĂŒhrt seit dem Neolithikum dazu, dass Umlagerungsprozesse z.B. von kohlenstoffhaltigen Sedimenten ausgelöst werden. In solchen dynamischen Landschaften ist der organische Kohlenstoff im Boden (SOC) sehr heterogen verteilt und zum Teil unter mĂ€chtigen Sedimentauflagen begraben. Ziel der Untersuchung war es herauszufinden, wo genau sich der SOC innerhalb eines Landschaftsausschnitts akkumuliert und wie sich einzelne GelĂ€ndepositionen voneinander hinsichtlich ihrer Kohlenstoffeigenschaften unterscheiden. Das Untersuchungsgebiet befindet sich in den AuslĂ€ufern des Bayerischen Waldes. Innerhalb des Einzugsgebietes des Otterbachs, einem TributĂ€r der Donau, wurden drei verschiedene GelĂ€ndepositionen beprobt: a) Unterhang, b) Hangfuß und c) Aue. Innerhalb der jeweiligen GelĂ€ndepositionen wurden mehrere Profile angelegt, um die kleinrĂ€umige HeterogenitĂ€t der Böden abzubilden. Die Profile wurden horizontbezogen bis in eine Tiefe von 150 cm beprobt und auf ihre Lagerungsdichte, Kohlenstoffmenge (TC, IC und OC) und Textur analysiert. Anschließend wurden Kohlenstoffgehalte und -vorrĂ€te berechnet. Eine zweistufige physikalische Dichtefraktionierung in Natriumpolywolframatlösung (1.8 g cm-Âł und 2.4 g cm-Âł) wurde angewandt, um die Anteile der verschiedenen Fraktionen der organischen Substanz am Gesamtkohlenstoffgehalt zu ermitteln. Die Analyse der chemischen Zusammensetzung der Fraktionen mit Kernspinresonanzspektroskopie (NMR) sowie ihres Alters mit Radiokohlenstoffdatierung (AMS C-14) ermöglichte eine genaue qualitative Differenzierung der organischen Bodensubstanz und ließ RĂŒckschlĂŒsse auf ihre StabilitĂ€t und ihren Abbaugrad zu. Durch die Kombination der Verfahren konnte ein genaues Bild der Verteilung des SOC in einem Landschaftsausschnitt gezeichnet und seine QualitĂ€t detailliert beschrieben werden. In den Ergebnissen zeigt sich, dass die mit rund 1000 Jahren relativ jungen Auenböden eine besondere Rolle bei der Speicherung von SOC spielen. Diese weisen signifikant höhere SOC VorrĂ€te auf als die Profile im Akkumulationsbereich des Hangfußes. Auch verteilen sich die VorrĂ€te in den Auenprofilen ĂŒber die gesamte Profiltiefe. Im Unterhang und im Hangfuß kann eine solche Verteilung nicht nachgewiesen werden, hier ist der Großteil des Kohlenstoffs nur in den obersten 30 cm gespeichert

    Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach.

    Get PDF
    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. GBM cells are highly resistant to apoptosis induced by antitumor drugs and radiotherapy resulting in cancer progression. We assessed whether a systems medicine approach, analysing the ability of tumor cells to execute apoptosis could be utilized to predict the response of GBM patients to treatment. Concentrations of the key proapoptotic proteins procaspase-3, procaspase-9, Smac and Apaf-1 and the antiapopotic protein XIAP were determined in a panel of GBM cell lines and GBM patient tumor resections. These values were used as input for APOPTO-CELL, a systems biological based mathematical model built to predict cellular susceptibility to undergo caspase activation. The modeling was capable of accurately distinguishing between GBM cells that die or survive in response to treatment with temozolomide in 10 of the 11 lines analysed. Importantly the results obtained using GBM patient samples show that APOPTO-CELL was capable of stratifying patients according to their progression-free survival times and predicted the ability of tumor cells to support caspase activation in 16 of the 21 GBM patients analysed. Calculating the susceptibility to apoptosis execution may be a potent tool in predicting GBM patient therapy responsiveness and may allow for the use of APOPTO-CELL in a clinical setting

    Rab3D is critical for secretory granule maturation in PC12 cells.

    Get PDF
    Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs

    Polarization investigation of a tunable high-speed short-wavelength bulk-micromachined MEMS-VCSEL

    Get PDF
    We report the investigation of the state of polarization (SOP) of a tunable vertical-cavity surface-emitting laser (VCSEL) operating near 850 nm with a mode-hop free single-mode tuning range of about 12 nm and an amplitude modulation bandwidth of about 5 GHz. In addition, the effect of a sub-wavelength grating on the device and its influence on the polarization stability and polarization switching has been investigated. The VCSEL with an integrated sub-wavelength grating shows a stable SOP with a polarization mode suppression ratio (PMSR) more than 35 dB during the tuning

    Italy’s Path to Very Low Fertility: The Adequacy of Economic and Second Demographic Transition Theories: Le cheminement de l’Italie vers les trĂšs basses fĂ©conditĂ©s: AdĂ©quation des thĂ©ories Ă©conomique et de seconde transition dĂ©mographique

    Get PDF
    The deep drop of the fertility rate in Italy to among the lowest in the world challenges contemporary theories of childbearing and family building. Among high-income countries, Italy was presumed to have characteristics of family values and female labor force participation that would favor higher fertility than its European neighbors to the north. We test competing economic and cultural explanations, drawing on new nationally representative, longitudinal data to examine first union, first birth, and second birth. Our event history analysis finds some support for economic determinants of family formation and fertility, but the clear importance of regional differences and of secularization suggests that such an explanation is at best incomplete and that cultural and ideational factors must be considered
    • 

    corecore