5 research outputs found

    Micronuclei induced by reverse transcriptase inhibitors in mononucleated and binucleated cells as assessed by the cytokinesis-block micronucleus assay

    Get PDF
    This study evaluated the clastogenic and/or aneugenic potential of three nucleoside reverse transcriptase inhibitors (zidovudine - AZT, lamivudine - 3TC and stavudine - d4T) using the cytokinesis-block micronucleus (CBMN) assay in human lymphocyte cultures. All three inhibitors produced a positive response when tested in binucleated cells. The genotoxicity of AZT and 3TC was restricted to binucleated cells since there was no significant increase in the frequency of micronuclei in mononucleated cells. This finding indicated that AZT and 3TC caused chromosomal breakage and that their genotoxicity was related to a clastogenic action. In addition to the positive response observed with d4T in binucleated cells, this drug also increased the frequency of micronuclei in mononucleated cells, indicating clastogenic and aneugenic actions. Since the structural differences between AZT and 3TC and AZT and d4T involve the 3' position in the 2'-deoxyribonucleoside and in an unsaturated 2',3',dideoxyribose, respectively, we suggest that an unsaturated 2', 3', dideoxyribose is responsible for the clastogenic and aneugenic actions of d4T

    Genetic toxicity of dillapiol and spinosad larvicides in somatic cells of Drosophila melanogaster

    No full text
    BACKGROUND: Higher rates of diseases transmitted from insects to humans led to the increased use of organophosphate insecticides, proven to be harmful to human health and the environment. New, more effective chemical formulations with minimum genetic toxicity effects have become the object of intense research. These formulations include larvicides derived from plant extracts such as dillapiol, a phenylpropanoid extracted from Piper aduncum, and from microorganisms such as spinosad, formed by spinosyns A and D derived from the Saccharopolyspora spinosa fermentation process. This study investigated the genotoxicity of dillapiol and spinosad, characterising and quantifying mutation events and chromosomal and/or mitotic recombination using the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster. RESULTS: Standard cross larvae (72 days old) were treated with different dillapiol and spinosad concentrations. Both compounds presented positive genetic toxicity, mainly as mitotic recombination events. Distilled water and doxorubicin were used as negative and positive controls respectively. CONCLUSION: Spinosad was 14 times more genotoxic than dillapiol, and the effect was found to be purely recombinogenic. However, more studies on the potential risks of insecticides such as spinosad and dillapiol are necessary, based on other experimental models and methodologies, to ensure safe use. © 2013 Society of Chemical Industry
    corecore