60 research outputs found

    Role of urothelial cells in BCG immunotherapy for superficial bladder cancer

    Get PDF
    Intravesical instillation of Bacillus Calmette-Guérin (BCG) is used for the treatment of superficial bladder cancer, both to reduce the recurrence rate of bladder tumour and to diminish the risk of progression. Since its first therapeutic application in 1976, major research efforts have been directed to decipher the exact mechanism of action of the BCG-associated antitumour effect. Bacillus Calmette-Guérin causes an extensive local inflammatory reaction in the bladder wall. Of this, the massive appearance of cytokines in the urine of BCG-treated patients stands out. Activated lymphocytes and macrophages are the most likely sources of these cytokines, but at present other cellular sources such as urothelial tumour cells cannot be ruled out. Bacillus Calmette-Guérin is internalised and processed both by professional antigen-presenting cells and urothelial tumour cells, resulting in an altered gene expression of these cells that accumulates in the presentation of BCG antigens and secretion of particular cytokine

    A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Get PDF
    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire

    Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells

    Get PDF
    Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned

    Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    Get PDF
    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles

    Classification of current anticancer immunotherapies

    Get PDF
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches

    Human cytomegalovirus strain-dependent changes in natural killer cell recognition of infected fibroblasts.

    No full text

    Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice.

    Get PDF
    The role of major histocompatibility complex (MHC) class I expression in control of the sensitivity of normal cells to natural killer (NK) cells was studied by the use of mutant mice made deficient for expression of beta 2-microglobulin (beta 2m) through homologous recombination in embryonal stem cells. T-cell blasts from beta 2m-deficient (beta 2m -/-) mice were killed by NK cells from normal mice in vitro, while beta 2m +/- blasts were resistant. The beta 2m defect also affected the NK effector cell repertoire: NK cells from beta 2m -/- mice failed to kill beta 2m -/- blasts, while they retained the ability to kill the prototype NK cell target lymphoma YAC-1, although at reduced levels. The inability to recognize beta 2m -/- blasts could be transferred with beta 2m -/- bone marrow to irradiated beta 2m-expressing mice. In contrast, the development of CD8+ T cells (deficient in beta 2m -/- mice) was restored in such chimera. These results indicate that loss of MHC class I/beta 2m expression is sufficient to render normal cells sensitive to NK cells, and that the same defect in the hemopoietic system of a mouse renders its NK cells tolerant to beta 2m-deficient but otherwise normal cells. In the beta 2m -/- mice, NK cells may be selected or educated by other bone marrow cells to tolerate the MHC class I deficiency. Alternatively, the specificity may be controlled directly by the class I molecules on the NK cells themselves

    Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts.

    No full text
    NK cells play a key role in the control of CMV infection in mice, but the mechanism by which NK cells can recognize and kill CMV-infected cells is unclear. In this study, the modulation of NK cell susceptibility of human CMV (hCMV)-infected cells was examined. We used a human lung and a human foreskin fibroblast cell line infected with clinical isolates (4636, 13B, or 109B) or with laboratory strains (AD169, Towne). The results indicate that all three hCMV clinical isolates confer a strong NK resistance, whereas only marginal or variable effects in the NK recognition were found when the laboratory strains were used. The same results were obtained regardless of the conditions of infection, effector cell activation status, cell culture conditions, and/or donor-target cell combinations. The NK cell inhibition did not correlate with HLA class I expression levels on the surface of the target cell and was independent of the leukocyte Ig-like receptor-1, as evaluated in Ab blocking experiments. No relevant changes were detected in the adhesion molecules ICAM-I and LFA-3 expressed on the cell surface of cells infected with hCMV clinical and laboratory strains. We conclude that hCMV possesses other mechanisms, related neither to target cell expression of HLA-I or adhesion molecules nor to NK cell expression of leukocyte Ig-like receptor-1, that confer resistance to NK cell recognition. Such mechanisms may be lost during in vitro passage of the virus. These results emphasize the differences between clinical hCMV isolates compared with laboratory strains
    corecore