25 research outputs found

    Amyloid myopathy: a diagnostic challenge

    Get PDF
    Amyloid myopathy (AM) is a rare manifestation of primary systemic amyloidosis (AL). Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis

    Mutation m.15923A>G in the MT-TT gene causes mild myopathy - case report of an adult-onset phenotype

    Get PDF
    Background: Only five patients have previously been reported to harbor mutations in the MT-TT gene encoding mitochondrial tRNA threonine. The m.15923A > G mutation has been found in three severely affected children. One of these patients died within days after birth and two had a phenotype of myoclonic epilepsy with ragged red fibers (MERRF) in early childhood. We have now found the mutation in an adult patient with mild myopathy.Case presentation: The patient is a 64-year-old Finnish man, who developed bilateral ptosis, diplopia and exercise intolerance in his fifties. Family history was unremarkable. Muscle histology showed cytochrome c-oxidase (COX) negative and ragged red fibres. The m.15923A > G mutation heteroplasmy was 33% in the skeletal muscle and 2% in buccal epithelial cells. The mutation was undetectable in the blood. Single-fibre analysis was performed and COX-negative fibres had a substantially higher heteroplasmy of 92%, than the normal fibres in which it was 43%.Conclusions: We report the fourth patient with m. 15923A > G and with a remarkably milder phenotype than the previous three patients. Our findings and recent biochemical studies suggest that the mutation m.15923A > G is a definite disease-causing mutation. Our results also suggest that heteroplasmy of the m.15923A > G mutation correlates with the severity of the phenotype. This study expands the catalog of the phenotypes caused by mutations in mtDNA

    Case report: a novel frameshift mutation in the mitochondrial cytochrome c oxidase II gene causing mitochondrial disorder

    Get PDF
    Background: Mitochondrial cytochrome c oxidase 2, MT-CO2, encodes one of the three subunits, which form the catalytic core of cytochrome c oxidase (COX), complex IV. Mutations in MT-CO2 are rare and the associated phenotypes are variable including nonsyndromic and syndromic forms of mitochondrial diseases.Case presentation: We describe a 30-year-old man with cognitive decline, epilepsy, psychosis, exercise intolerance, sensorineural hearing impairment, retinitis pigmentosa, cataract and lactic acidosis. COX-deficient fibers and ragged red fibers were abundant in the muscle. Sequencing of mitochondrial DNA (mtDNA) revealed a novel frameshift mutation m.8156delG that was predicted to cause altered C-terminal amino acid sequence and to lead to truncation of the COX subunit 2. The deletion was heteroplasmic being present in 26% of the mtDNA in blood, 33% in buccal mucosa and 95% in muscle. Deletion heteroplasmy correlated with COX-deficiency in muscle histochemistry. The mother and the siblings of the proband did not harbor the deletion.Conclusions: The clinical features and muscle histology of the proband suggested a mitochondrial disorder. The m.8156delG deletion is a new addition to the short list of pathogenic mutations in the mtDNA-encoded subunits of COX. This case illustrates the importance of mtDNA sequence analysis in patients with an evident mitochondrial disorder

    Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family

    Get PDF
    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease

    Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Get PDF
    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease

    POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The c.2447G>A (p.R722H) mutation in the gene <it>POLG1 </it>of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.</p> <p>Methods</p> <p>Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the <it>POLG1, POLG2, ANT1 </it>and <it>Twinkle </it>genes were sequenced.</p> <p>Results</p> <p>An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and <sup>18</sup>F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the <it>POLG1 </it>gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in <it>POLG2</it>, <it>ANT1 </it>and <it>Twinkle </it>genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.</p> <p>Conclusions</p> <p>The recessive c.2447G>A (p.R722H) mutation in the linker region of the <it>POLG1 </it>gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.</p

    Myopathy and peripheral neuropathy associated with the 3243A>G mutation in mitochondrial DNA

    No full text
    Abstract Neurological features are common in mitochondrial diseases because tissues depending upon oxidative phosphorylation bear the brunt of the pathogenesis. The 3243A>G mutation in the MTTL1 gene in mitochondrial DNA is regarded as the most frequent mitchondrial point mutation and classically presents with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Myopathy and peripheral neuropathy have been documented in patients with mitochondrial diseases, but not properly characterised in patients with the 3243A>G mutation. We have previously determined the prevalence of patients with this mutation in a defined population in northern Finland. The clinical spectrum and molecular aspects of myopathy and peripheral neuropathy are analysed here in a population-based cohort of patients with 3243A>G. Fifty patients were examined neurologically in order to define the frequency of myopathy and its histological, ultrastructural and clinical features. The frequency and phenotypic variability of peripheral neuropathy were determined in 32 patients and muscle computed tomography findings recorded in 24 patients. Finally, variations in mutation heteroplasmy were analysed in 10 patients using single muscle fibre PCR analysis. The frequency of peripheral neuropathy was 22% (95% confidence interval (CI), 9–40%) and that of clinical myopathy 50% (95% CI, 36–64%). Moderate limb weakness was the most common myopathic feature, but mild weakness and external ophthalmoplegia were also present. CT scans revealed myopathic changes in 54% of the patients (95% CI, 33–76%), most frequently in the pelvic muscles. The incidence of myopathy was highest in the fifth decade of life, and higher age and male gender increased the risk of neuropathy. Muscle histology was abnormal in 72% of the cases examined (95% CI, 55–86%). The presence of intramitochondrial crystals and COX-negative fibres and variations in the size and shape of mitochondria were more common in the muscle of myopathic patients. Single muscle fibre analysis pointed to a correlation between the mutation load in ragged red fibres and in adjacent histologically normal fibres, and the proportion of 3243A>G in histologically normal muscle fibres showed a pattern compatible with random genetic drift. The results indicate that myopathy and peripheral neuropathy are common in patients with the 3243A>G and that myopathy is highly variable in presentation. Segregation of 3243A>G in individual muscle fibres showed a complex process with random and non-random elements

    Novel compound heterozygous mutation in SACS gene leads to a milder autosomal recessive spastic ataxia of Charlevoix-Saguenay, ARSACS, in a Finnish family

    Get PDF
    Key Clinical Message Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a rare disorder outside Quebec causing childhood-onset cerebellar ataxia, peripheral neuropathy, and pyramidal tract signs. A Finnish family with milder form of ARSACS was found to harbor three mutations, p.E1100K, p.N1489S, and p.M1359T, in SACS gene. The mutations segregated with the disease.Peer reviewe

    Phenotype of patients with Charcot-Marie-Tooth with the p.His123Arg mutation in GDAP1 in northern Finland

    No full text
    Abstract Background and Objectives:Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene cause autosomal dominant or autosomal recessive forms of Charcot-Marie-Tooth disease (CMT). Our aim was to study the clinical phenotype of patients with CMT caused by heterozygous p.His123Arg in GDAP1. Methods:Twenty-three Finnish patients were recruited from a population-based cohort and through family investigation. Each patient was examined clinically and electrophysiologically. The Neuropathy Symptom Score and the Neuropathy Disability Score (NDS) were used in clinical evaluation. Results:The median age at onset of symptoms was 17 years among patients with p.His123Arg in GDAP1. Motor symptoms were markedly more common than sensory symptoms at onset. All patients had distal weakness in lower extremities, and 17 (74%) patients had proximal weakness. Muscle atrophy and pes cavus were also common. Nineteen (82%) patients had sensory symptoms such as numbness or pain. The disease progressed with age, and the NDS increased 8.5 points per decade. Electrodiagnostic testing revealed length-dependent, sensory and motor axonal polyneuropathy. EDx findings were asymmetrical in 14 patients. Genealogic study of the families suggested a founder effect. Discussion:We found that CMT in patients with p.His123Arg in GDAP1 is relatively mild and slow in progression

    Mutation m.15923A>G in the MT-TT gene causes mild myopathy – case report of an adult-onset phenotype

    No full text
    Abstract Background: Only five patients have previously been reported to harbor mutations in the MT-TT gene encoding mitochondrial tRNA threonine. The m.15923A > G mutation has been found in three severely affected children. One of these patients died within days after birth and two had a phenotype of myoclonic epilepsy with ragged red fibers (MERRF) in early childhood. We have now found the mutation in an adult patient with mild myopathy. Case presentation: The patient is a 64-year-old Finnish man, who developed bilateral ptosis, diplopia and exercise intolerance in his fifties. Family history was unremarkable. Muscle histology showed cytochrome c-oxidase (COX) negative and ragged red fibres. The m.15923A > G mutation heteroplasmy was 33% in the skeletal muscle and 2% in buccal epithelial cells. The mutation was undetectable in the blood. Single-fibre analysis was performed and COX-negative fibres had a substantially higher heteroplasmy of 92%, than the normal fibres in which it was 43%. Conclusions: We report the fourth patient with m. 15923A > G and with a remarkably milder phenotype than the previous three patients. Our findings and recent biochemical studies suggest that the mutation m.15923A > G is a definite disease-causing mutation. Our results also suggest that heteroplasmy of the m.15923A > G mutation correlates with the severity of the phenotype. This study expands the catalog of the phenotypes caused by mutations in mtDNA
    corecore