68 research outputs found

    The Guinea-Bissau Family of Mycobacterium tuberculosis Complex Revisited

    Get PDF
    The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048)

    Distinct genotypic profiles of the two major clades of Mycobacterium africanum

    Get PDF
    Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis (TB) and a member of the M. tuberculosis complex (MTC). Additional MTC species that cause TB in humans and other mammals include Mycobacterium africanum and Mycobacterium bovis. One result of studies interrogating recently identified MTC phylogenetic markers has been the recognition of at least two distinct lineages of M. africanum, known as West African-1 and West African-2. Methods: We screened a blinded non-random set of MTC strains isolated from TB patients in Ghana (n = 47) for known chromosomal region-of-difference (RD) loci and single nucleotide polymorphisms (SNPs). A MTC PCR-typing panel, single-target standard PCR, multi-primer PCR, PCR-restriction fragment analysis, and sequence analysis of amplified products were among the methods utilized for the comparative evaluation of targets and identification systems. The MTC distributions of novel SNPs were characterized in the both the Ghana collection and two other diverse collections of MTC strains (n = 175 in total). Results: The utility of various polymorphisms as species-, lineage-, and sublineage-defining phylogenetic markers for M. africanum was determined. Novel SNPs were also identified and found to be specific to either M. africanum West African-1 (Rv1332 523; n = 32) or M. africanum West African-2 (nat 751; n = 27). In the final analysis, a strain identification approach that combined multi-primer PCR targeting of the RD loci RD9, RD10, and RD702 was the most simple, straight-forward, and definitive means of distinguishing the two clades of M. africanum from one another and from other MTC species. Conclusion: With this study, we have organized a series of consistent phylogenetically-relevant markers for each of the distinct MTC lineages that share the M. africanum designation. A differential distribution of each M. africanum clade in Western Africa is described

    Tuberculosis and HIV Co-Infection

    Get PDF
    Tuberculosis (TB) and HIV co-infections place an immense burden on health care systems and pose particular diagnostic and therapeutic challenges. Infection with HIV is the most powerful known risk factor predisposing for Mycobacterium tuberculosis infection and progression to active disease, which increases the risk of latent TB reactivation 20-fold. TB is also the most common cause of AIDS-related death. Thus, M. tuberculosis and HIV act in synergy, accelerating the decline of immunological functions and leading to subsequent death if untreated. The mechanisms behind the breakdown of the immune defense of the co-infected individual are not well known. The aim of this review is to highlight immunological events that may accelerate the development of one of the two diseases in the presence of the co-infecting organism. We also review possible animal models for studies of the interaction of the two pathogens, and describe gaps in knowledge and needs for future studies to develop preventive measures against the two diseases
    • …
    corecore