3,569 research outputs found

    Resolution and enhancement in nanoantenna-based fluorescence microscopy

    Full text link
    Single gold nanoparticles can act as nanoantennas for enhancing the fluorescence of emitters in their near-fields. Here we present experimental and theoretical studies of scanning antenna-based fluorescence microscopy as a function of the diameter of the gold nanoparticle. We examine the interplay between fluorescence enhancement and spatial resolution and discuss the requirements for deciphering single molecules in a dense sample. Resolutions better than 20 nm and fluorescence enhancement up to 30 times are demonstrated experimentally. By accounting for the tip shaft and the sample interface in finite-difference time-domain calculations, we explain why the measured fluorescence enhancements are higher in the presence of an interface than the values predicted for a homogeneous environment.Comment: 10 pages, 3 figures. accepted for publication in Nano Letter

    Statistical Mechanics of Support Vector Networks

    Get PDF
    Using methods of Statistical Physics, we investigate the generalization performance of support vector machines (SVMs), which have been recently introduced as a general alternative to neural networks. For nonlinear classification rules, the generalization error saturates on a plateau, when the number of examples is too small to properly estimate the coefficients of the nonlinear part. When trained on simple rules, we find that SVMs overfit only weakly. The performance of SVMs is strongly enhanced, when the distribution of the inputs has a gap in feature space.Comment: REVTeX, 4 pages, 2 figures, accepted by Phys. Rev. Lett (typos corrected

    Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties

    Full text link
    Recent theoretical and experimental improvements in the determination of charm and bottom quark masses are discussed. A new and improved evaluation of the contribution from the gluon condensate to the charm mass determination and a detailed study of potential uncertainties in the continuum cross section for bbˉb\bar b production is presented, together with a study of the parametric uncertainty from the αs\alpha_s-dependence of our results. The final results, mc(3GeV)=986(13)m_c(3 \text{GeV})=986(13) MeV and mb(mb)=4163(16)m_b(m_b)=4163(16) MeV, represent, together with a closely related lattice determination mc(3  GeV)=986(6)m_c(3\;{\rm GeV})=986(6) MeV, the presently most precise determinations of these two fundamental Standard Model parameters. A critical analysis of the theoretical and experimental uncertainties is presented.Comment: 12 pages, presented at Quarks~2010, 16th International Seminar of High Energy Physics, Kolomna, Russia, June 6-12, 2010; v2: references adde

    Phase Diagram and Storage Capacity of Sequence Processing Neural Networks

    Full text link
    We solve the dynamics of Hopfield-type neural networks which store sequences of patterns, close to saturation. The asymmetry of the interaction matrix in such models leads to violation of detailed balance, ruling out an equilibrium statistical mechanical analysis. Using generating functional methods we derive exact closed equations for dynamical order parameters, viz. the sequence overlap and correlation- and response functions, in the thermodynamic limit. We calculate the time translation invariant solutions of these equations, describing stationary limit-cycles, which leads to a phase diagram. The effective retarded self-interaction usually appearing in symmetric models is here found to vanish, which causes a significantly enlarged storage capacity of αc0.269\alpha_c\sim 0.269, compared to \alpha_\c\sim 0.139 for Hopfield networks storing static patterns. Our results are tested against extensive computer simulations and excellent agreement is found.Comment: 17 pages Latex2e, 2 postscript figure

    Differentiation of cerebral tumors using multi-section echo planar MR perfusion imaging

    Get PDF
    Objective: We have investigated the performance of magnetic resonance (MR) perfusion imaging to differentiate between astrocytomas grade II, grade III and glioblastomas in a prospective study. Materials and methods: In 33 patients with suspected supratentorial primary cerebral tumors we performed multi-section Echo Planar MR perfusion imaging. Regional cerebral blood volume (rCBV) maps were calculated and the maximum rCBV was determined from the entire lesion. This value was divided by the mean rCBV value from the contralateral side, which provided the rCBV index used in this study. The rCBV index was correlated with the histological tumor classification after stereotactic biopsy (n=7) or open resection (n=26). Results: The maximum rCBV index was 1.2±0.8 for grade II astrocytomas (n=3), 4.0±1.2 for grade III astrocytomas (n=13), and 10.3±3.3 for glioblastomas (n=17). The difference between grade III astrocytomas and glioblastomas was highly significant (P<0.001). Discussion and conclusion: The rCBV index measured with multi-section Echo Planar MR perfusion is capable of differentiating grade III astrocytomas from glioblastomas. It serves as an additional parameter to establish a diagnosis in cases where it is not possible to clearly differentiate between these types of tumors on the basis of conventional MR imaging. MR perfusion imaging also provides information about spatial heterogeneities within a tumor which might improve diagnostic performance. This technology may also be of interest for follow-up examinations after histological diagnosis and further treatment

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE

    Simple model for decay of superdeformed nuclei

    Full text link
    Recent theoretical investigations of the decay mechanism out of a superdeformed nuclear band have yielded qualitatively different results, depending on the relative values of the relevant decay widths. We present a simple two-level model for the dynamics of the tunneling between the superdeformed and normal-deformed bands, which treats decay and tunneling processes on an equal footing. The previous theoretical results are shown to correspond to coherent and incoherent limits of the full tunneling dynamics. Our model accounts for experimental data in both the A~150 mass region, where the tunneling dynamics is coherent, and in the A~190 mass region, where the tunneling dynamics is incoherent.Comment: 4 page

    QCD corrections to decay-lepton polar and azimuthal angular distributions in e+e- -> t tbar in the soft-gluon approximation

    Get PDF
    QCD corrections to order alpha_s in the soft-gluon approximation to angular distributions of decay charged leptons in the process e+e- -> t tbar followed by semileptonic decay of t or tbar, are obtained in the e+e- centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow direct comparison with experiment without the need to reconstruct the top rest frame. The results also do not depend on the choice of a spin quantization axis for t or tbar. Analytic expression for the triple distribution in the polar angle of t and polar and azimuthal angles of the lepton is obtained. Analytic expression is also derived for the distribution in the charged-lepton polar angle. Numerical values are discussed for total c.m. energies of 400 GeV, 800 GeV and 1500 GeV.Comment: 21 pages, Latex, 6 figures included in the submission. To appear in Pramana - Journal of Physics; expanded version of hep-ph/0011321, v
    corecore