
Statistical Mechanics of Support Vector NetworksRainer Dietrich1, Manfred Opper2 and H. Sompolinsky31 Institut f�ur Theoretische Physik, Julius-Maximilians-Universit�at, Am Hubland, D-97074 W�urzburg, Germany.2 Department of Computer Science and Applied Mathematics, Aston University, Birmingham B4 7ET, UK.3 Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel.Using methods of Statistical Physics, we investigatethe generalization performance of support vector machines(SVMs), which have been recently introduced as a generalalternative to neural networks. For nonlinear classi�cationrules, the generalization error saturates on a plateau, whenthe number of examples is too small to properly estimate thecoe�cients of the nonlinear part. When trained on simplerules, we �nd that SVMs over�t only weakly. The perfor-mance of SVMs is strongly enhanced, when the distributionof the inputs has a gap in feature space.PACS numbers: 87.10.+e.,05.90.+mStatistical Mechanics provides an important approachto analyzing and understanding the ability of neural net-works to learn and generalize from examples (see e.g.[1{3]). The majority of this work has been devoted tothe simplest network architecture, the perceptron. Thisnetwork however has limited power, because it classi�esexamples with a simple linear separating hyperplane andis able to learn only linear separable rules. More com-plicated multilayer neural nets can realize general non-linear rules (when the size of their hidden layer is largeenough) but have also practical and theoretical disad-vantages. Learning in these networks results in a usuallynonconvex optimization problem and there is no guaran-tee that an algorithm will �nd the minimum of the train-ing cost function. The complexity of the training errorsurface re
ects itself in the theoretical analysis by Sta-tistical Mechanics. The occurence of phases of brokenergodicity [4] makes their analysis a complicated task.Finally, network parameters must be chosen carefully inorder to adapt the network's complexity on the task andto avoid over�tting.Recently, a new type of learning machine has been in-troduced by V. Vapnik and his collaborators [5,6] whichmay become a reasonable alternative to neural networks.These support vector machines (SVMs) seem to have sev-eral advantages over neural networks. Being generaliza-tions of perceptrons, their training involves only simpleconvex optimization. Further, for several applications, ithas been shown that SVMs do not have a strong tendencyto over�t.In this letter, we present a detailed analysis of the typ-ical performance of SVMs by methods of Statistical Me-chanics. To understand the basic idea behind the SVMapproach, assume a nonlinear mapping ~	(x) from vec-

tors x 2 IRN onto vectors ~	 which belong to an M -dimensional feature space. A nonlinear classi�cation ofinputs x can be de�ned by a linear separation of fea-ture vectors ~	(x) using a perceptron with weight vec-tor ~w 2 IRM perpendicular to the separating hyperplanevia sign�~	(x) � ~w� : The dot denotes the standard innerproduct of vectors in IRM . The vector ~w can be adaptedto a set of example data by any learning algorithm forperceptrons. This simple approach has major problemswhich result from the typical high dimensionality of thefeature space. Assuming e.g., that the vector ~	 containsall bilinear expressions of components of the input vec-tor x (in addition to linear ones), the dimension M is oforder N2. First, there is a big computational problem instoring and learning the weights and second, one can ex-pect that there is also a large tendency of these machinesto over�t, because there are much less training data thanadjustable parameters in this model. The main idea toovercome these problems is to use the optimal stabilitylearning algorithm, which has also been studied exten-sively in the Statistical Mechanics approach to neuralnetworks (see e.g. [3]). The goal of this algorithm is to�nd a vector of weights ~w which allows for a separation ofpositive and negative example points with the maximalmargin de�ned by� := max~w min� fh�=p~w � ~wg: (1)The local �elds h� are de�ned byh� = ��~	(x�) � ~w (2)Here �� 2 f�1; 1g is the classi�cation of the point x�,for � = 1; : : : ;m, and m is the total number of labelledexamples in the training set. This maximization problemis found to be equivalent to a quadratic minimizationproblem for the function 12 ~w� ~w under the constraints thath� � 1 for all examples in the training set. Accordingto convex optimization theory the solution vector canbe expanded as a linear combination of example featurevectors via ~w =X� ���� = ~	(x�) (3)where �� � 0 are Lagrange parameters which account forthe m inequality constraints. Hence, the number of ad-justable parameters �� for this algorithm never exceeds1
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the number of examples. The �� are nonzero only forthose examples, for which h� = 1, de�ning the supportvectors (SVs) of the data set. If the remaining exam-ples (�� = 0) would be discarded from the training set,the SVM would predict their correct label ��. Hence, ifthe relative number of SVs is small, we can expect thatthe SVM generalizes well. In fact, a simple argument [5]shows that the expected ratio of the number of supportvectors over m yields an upper bound on the generaliza-tion error. We will see later within the average case sce-nario of Statistical Mechanics that this mechanism pre-vents a complex SVM from over�tting when learning asimple rule.The expansion (3) also reduces the computational costof the algorithm drastically because any inner productof ~w with vectors ~	(x) in the feature space (including~w � ~w) is entirely expressed in terms of the so called kernelK(x;y) = ~	(x) � ~	(y) =P�	�(x)	�(y). In particular,for any x, we have~w � ~	(x) =X� ����K(x;x�): (4)Hence, both learning and prediction on novel inputs de-pend only on the feature vectors ~	 through the kernelK. In fact, there is no need to specify the high dimen-sional mapping ~	(�) explicitely. Instead, one can directlytake any reasonable positive semide�nite operator ker-nel K, which by Mercer's theorem has a decompositionK(x;y) = P� ����(x)��(y) in terms of eigenvalues ��and orthonormal eigenfunctions ��(x) and identify 	�with p����. This approach even allows to take kernelswith feature space dimensionM =1 without problems.We will now study the generalization performance ofSVMs within the framework of Statistical Mechanics. Wede�ne the partition functionZ = Z MY�=1 dw� e��2 ~w�~w mY�=1� �� MX�=1p��w���(x�)� 1!(5)which for � !1 is dominated by the solution vector ~wof the SVM algorithm. The properties of the SVM canbe computed from the average free energy F = � 1� hlnZi;in the zero temperature limit � ! 1, where the brack-ets denote the average over the distribution of m train-ing examples. The main di�erence from the StatisticalMechanics of learning in a simple perceptron with Mweights is that in the SVM, each coupling w� is weightedby p��, which typically diminishes the in
uence of themore complex, higher order degrees of freedom in theeigenvector expansion. As we will see, this makes thegeneralization behavior of the SVM rather di�erent fromthat of a simple perceptron in the thermodynamic limitN ! 1, when the rule to be learnt has a similar eigen-vector expansion. We will consider here a rule of the

form �� = sign�P�p��B���(x�)� : where the teacherweight vector is given by B� = �1. We will further av-erage the performance over all teachers of this form withequal probability for all nonzero components. We willspecialize on a family of kernels of the form K(x;y) =k �x�yN �, where the only constraint on the function k(�)is the non-negativity of the eigenvalues. These kernelsare permutation symmetric in the components of the in-put vectors and contain the simple perceptron as a specialcase, when k is a linear function. This choice has the nicefeature that for binary input vectors x 2 f�1; 1gN theeigenvalue decomposition of K(x;y) can be explicitelycalculated [7]. The eigenfunctions are labelled by sub-sets � � f1; : : : ; Ng. We have ��(x) = 2�N=2Qi2� xi.The eigenvalues are �� = 2N=2PxK(e;x)��(x) wheree = (1; : : : ; 1)T , which depend on the cardinality j�j onlyand show for large N an exponential decay with j�j like2NN j�j k(j�j)(0): The corresponding degeneracy grows expo-nentially: nj�j = �Nj�j� ' N j�j=j�j!.We expect that a decay of the generalization error,�g, to zero should occur only on the scale of m = O (M),sinceM is the number of learnable parameters. However,as we will show, �g may drop to small values alreadyon a scale of m = �N examples. Hence, we make thegeneral ansatz m = �N l, l 2 IN and calculate fl :=lim�!1 limN!1N�lF .If we assume that the inputs x� are drawn at ran-dom with respect to a uniform probability distribu-tion D(x) on f�1; 1gN , we can perform the averageover the input distribution by the replica method [1{3].This becomes tractable by the fact that the eigenfunc-tions are orthonormal with respect to u(x) and we have2Nh��(x)��0(x)iu = Px ��(x)��0 (x) = ���0 . Further-more, all but the constant eigenfunctions have zero meanunder the uniform distribution. By restricting the ker-nels to having k(0) = 0, the average over the inputs isexpressed in the thermodynamic limit N !1 by expec-tations over Gaussian random variables. These averagescan be further expressed by the order parametersq0 =X� �� < (w�)2 >;q =X� �� < w� >2R =X� �� < w� > B�where �� := ��=2N , and < ::: > denotes a statisti-cal mechanical averaging speci�ed by Eq. (5). Thegeneralization error is �g = 1� arccos RpBq : where theB = P� �� = k(1) is the squared norm of the teachervector. In replica symmetry (which is expected to beexactly ful�lled by the convexity of the phase space) weobtain fl by extremizing the function2



fl(q; R; �) = � Z 1=pq�1 Dt� RtpBq �R2! (1�pqt)2�+ 12N l � nl�(+) � � + 1�l�� (6)��q � R2B(�) +B2l (nl�l +�(+) � �)�with respect to the orderparameters q; R and �. Fur-ther, Dt = dtp2� e�t2=2, �(x) = R x�1Dt and � :=lim�!1 �(q0 � q). �(+) := Pj�j>l �� denotes the sumover the higher order components and B(�) :=Pj�j<l ��.As a general result of solving the order parame-ter equations we �nd that all high order componentsj�j > l of the teacher vector are completely undeter-mined by learning only O �N l� examples, in the sensethat R(+) := Pj�j>l ��w�B� = 0, and also that q(+)0 :=Pj�j>l ��(w�)2 = 0, in the large N limit. However, aswe will see, the values of the corresponding weights w�are not zero but are determined by the expansion (3).On the other hand, all lower order components are com-pletely determined, in the sense that w� = cB� for allj�j < l, where c depends on � only. The only compo-nents which are actually learnt at a scale l are those forj�j = l. We will illustrate these results for quadratickernels of the form k(x) = (1 � d)x2 + dx, where theparameter d, 0 < d < 1, tunes the degree of nonlinearityin the SVM's decision boundary. On a scale of m = �Nexamples (left side of Fig. 1), the SVM is able to learnthe linear part of the teacher's rule. However,since thereis not enough information to infer the remaining O �N2�weights of the teacher's quadratic part, the generaliza-tion error of the SVM reaches a nonzero plateau with�g(�)��g(1) � ��1, where �g(1) = ��1arccos(d). Thisscaling may be understood from the fact that the unde-termined components w� and B�, with j�j = 2 act asa noise term during classi�cation similar to learning ofperceptrons with weight noise [3]. For comparison, wealso show the performance of a simple linear SVM (i.e. aperceptron) for which w� = 0 when j�j > 1. The betterperformance of the nonlinear SVM does not contradictthe fact that, on the linear scale, its higher order weightsw� for j�j = 2 are uncorrelated with the correspondingteacher values. Those weights are needed to learn thetraining examples perfectly which is not possible for thelinear machine when � exceeds a critical value = �c(d),given by �=�c = arctan�=(�cd).Increasing the number of examples to a scale of m =�N2 (right side of Fig. 1), the well known [8] 1=� asymp-totic vanishing of �g is found. A similar stepwise learninghas been obtained for the case of Gibbs learning in higherorder perceptrons [9]. In general, for kernels which arepolynomials of order z, more plateaus will appear. Onthe scale of m = � = N l�1 examples, the generalizationerror decays to a plateau at �!1 given by
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FIG. 1. Decrease of the generalization error on di�er-ent scales of examples, for quadratic SVM-kernel learning aquadratic teacher rule (d = 0:5; B = 1) and various gaps 
.The inset compares the SVM to a linear perceptron (uppercurve), trying to learn the same task. Simulations were per-formed with N= 201 and averaged over 50 runs (left and next�gure), and N= 20, 40 runs (right).�g = 1� arccosrB(�)B = 1� arccosvuutPl�1j=1 k(j)(0)j!k(1) : (7)Finally, at the highest scalem = �Nz , the generalizationerror converges to zero as �g � 0:500489z! ��1. This form isin accordance with general results [5] which show that (inthe worst case) the number of examples must be largerthan the capacity of the classi�er in order to achieve asmall generalization error. The capacity mc = �cNz isfound from (6) by solving the order parameter equationswith the restriction R = 0, as the value of � where q0diverges. We obtain �c = 2z! which agrees with the resultsin [10] for polynomial separation surfaces in the large Nlimit.As the next problem, we study the ability of the SVMto cope with the problem of over�tting when learning asimple rule. We keep the SVM quadratic, but choose asimpler, linear teacher rule according to jB�j = 1 for j�j =1 and jB�j = 0 else. The results for the generalizationerror are shown in Fig. 2, where the number of examplesis scaled as m = �N . Surprisingly, although the studenthas of O �N2� adjustable parameters, this does not leadto any strong over�tting. The SVM is able to learn theN teacher weights on the scale of m = �N examples farbelow capacity. For comparison, we have also shown �gfor a simple linear SVM (i.e. with w� = 0 for j�j = 2).While for the latter case, the decay of the generalizationerror is of the well known form �g � ��1, the quadraticSVM shows the somewhat slower decay �g � ��2=3. Thesame scaling is obtained for higher order SVMs whichlearn a low order e.g., a linear, rule.3



10
−1

10
0

10
1

10
2

m/N
10

−2

10
−1

10
0

εg

k(x) = 0.5 x
2
 + 0.5 x

k(x) = x

0.0 0.1 0.2
N

−1/2
0.06

0.10

0.14

εg

FIG. 2. Learning curves for linear student and quadraticSVM-kernels, all learning a linear teacher rule (B = d). For� = 10, a �nite size scaling is shown as inset.We can shed further light on this interesting resultby showing that the number of SVs increases like �2=3,hence the relative number of SVs (which is a crude upperbound on �g) decreases like ��1=3. This can be under-stood from the following analysis, which is valid for moregeneral classes of input distributions. For simplicity, werestrict ourselves to the= qudaratic SVM learning a lin-ear rule. We assume that the inputs have zero mean andare su�ciently weakly correlated such that the o�diago-nal elements of the quadratic part of the kernel matrixK(2)�� = (1 � d)(N�1x� � x�)2 for � 6= � are typicallyO (1=N). The diagonal elements are K(2)�� = 1� d. Eval-uating h� = ~w�~	(x�) using Eq. (4) one �nds that the rel-ative contributions of the o�-diagonal elements of K areO �(m=N2) 12 � and can be neglected on the linear scalem = �N . Hence we obtain h� = v� + (1� d)�� with v�being the contribution from the linear weights, namely,v� = ��pd=Nw � x, where w consists of w�; j�j = 1.Solving for the coe�cients ��, noting that they arenonzero only when h� > 1, we obtain�� = (1� d)�1(1� v�)�(1� v�) : (8)When � is small, all �� � 1=(1 � d) and the SVMacts like a Hebbian classi�er. With increasing num-ber of examples v� will grow and the probability that�� > 0 (an example is a SV) will decrease. The ex-act asymptotic scaling can be calculated selfconsistentlyassuming that for large �, w� ' cB� for � = 1 andc = N�1Pj�j=1 w�B� = 1N P�N�=1 ��u� where u� the lin-ear contribution to the local �eld of the teacher vector.Using Eq. (8) and noting that v� � cu� we obtainc � � Z 1=c0 du p(u)u (1� cu) (9)

valid for large �. Here p(u) denotes the density of theteacher linear �elds u. Solving Eq. (9) for c in limit of� ! 1 yields c � (�p(0)=6)1=3. Similarly, the relativenumber of SVs scales as p(0)=c � ��1=3p(0)2=3.The dependence on p(0) suggests that the density ofinputs at the teacher's decision boundary should play acrucial role for the generalization ability of the SVM.When this density vanishes close to the teacher's sepa-rating hypersurface, a much faster decay of the gener-alization error can be expected. To study this propertyin more detail, we have analyzed the Statistical Mechan-ics for an input distribution correlated with the teacherweights such that D(x) � ���P�p��B���(x)� 
�which have a gap of zero density with size 2
 around theteacher's decision boundary. As expected, the generaliza-tion performance of a quadratic SVM which learns froma quadratic teacher is enhanced, but the asymptotic de-cay towards the plateau on the linear scale (see Fig. 1) isstill of the form �g(�) � �g(1) � ��1. The e�ect of thegap is more dramatic on the quadratic scale m = �N2,where instead of an inverse power law, we now �nd a fastdrop of the generalization error like �g � ��3e�ĉ(
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