278 research outputs found
Stochastic model of hysteresis
The methods of the probability theory have been used in order to build up a
new model of hysteresis. It turns out that the reversal points of the control
parameter (e. g., the magnetic field) are Markov points which determine the
stochastic evolution of the process. It has been shown that the branches of the
hysteresis loop are converging to fixed limit curves when the number of cyclic
back-and-forth variations of the control parameter between two consecutive
reversal points is large enough. This convergence to limit curves gives a clear
explanation of the accommodation process. The accommodated minor loops show the
return-point memory property but this property is obviously absent in the case
of non-accommodated minor loops which are not congruent and generally not
closed. In contrast to the traditional Preisach model the reversal point
susceptibilities are non-zero finite values. The stochastic model can provide a
good approximation of the Raylaigh quadratic law when the external parameter
varies between two sufficiently small values.Comment: 13 pages, 14 figure
DETERMINATION OF THE ADJUSTING CIRCLE BY MEANS OF LINEAR OBSERVATION EQUATION
Denoting the third non linear term with Zo in the Equation (6), let us set up the linear
observation equation (10). After having completed the adjustment we compute the necessary
radius r on the base of equation (16). Relationship of the reliability of the adjusted
radius Q (23) and of the adjusted points Q (28) of the circle are given, too. To
prove the correctness of the algorithm worked out a programme has been compiled for'
the microcomputer PTA 4000+16 (SHARP 1500A) [Enclosure 1]. In the enclosure 2 some
examples are presented
dUTPase based switch controls transfer of virulence genes in order to preserve integrity of the transferred mobile genetic elements
dUTPases ubiquitously regulate cellular dUTP levels to preserve
genome integrity. Recently, several other cellular processes were
reported to be controlled by dUTPases including the horizontal
transfer of Staphylococcus aureus pathogenicity islands (SaPI).
SaPIs are mobil genetic elements that encode virulence enhancing
factors e.g. toxins. Here, phage dUTPases were proposed to
counteract the repressor protein (Stl) and promote SaPI excision
and transfer. A G protein-like mechanism was proposed which is
unexpected in light of the kinetic mechanism of dUTPase.
Here we investigate the molecular mechanism of SaPI transfer
regulation, using numerous dUTPase variants and a wide range
of in vitro methods (steady-state and transient kinetics, VIS and
fluorescence spectroscopy, EMSA, quartz crystal microbalance,
X-ray crystallography).
Our results unambiguously show that Stl inhibits the enzymatic
activity of dUTPase in the nM concentration range and
dUTP strongly inhibits the dUTPase: Stl complexation. These
results identify Stl as a highly potent dUTPase inhibitor protein
and disprove the G protein-like mechanism. Importantly, our
results clearly show that the dUTPase:dUTP complex is inaccessible
to the Stl repressor. Unlike in small GTPases, hydrolysis of
the substrate nucleoside triphosphate (dUTP in this case) is
required prior to the interaction with the partner (Stl repressor in
this case). We propose that dUTPase can efficiently interact with
Stl and induce SaPI excision only if the cellular dUTP level is low (i.e. when dUTPase resides mainly in the apo enzyme form)
while high dUTP levels would inhibit SaPI transfer. This mechanism
may serve the preservation of the integrity of the transferred
SaPI genes and links the well-known metabolic role of
dUTPases to their newly revealed regulatory function in spread
of virulence factors
European studies: Taking stock and looking ahead
This essay is an attempt to generalize experiences of Central and Eastern European universities in the field of European Studies over the past 20 years. The paper follows the logic of business analysis in order to come up with proposals for future action
The effects of leaching from alkaline red mud on soil biota: modelling the conditions after the Hungarian red mud disaster
A soil column experiment was set up to investigate the effect of red mud from Ajka (Hungary) on a typical soil profile from the concerned area. The chemical changes caused by the leachate of the red mud and the effects of these changes on living organisms were assessed. Ecotoxicological tests with Vibrio fischeri, Sinapis alba and Folsomia candida were performed and the number of aerobic heterotrophic microorganisms was determined. The total, plant available, exchangeable and water soluble fractions of Na, Mo, Cu, and Cr increased in the soil mostly due to their leaching from the red mud layer and partly to the increase of the pH and DOC concentration. The chemical changes had significant effects on the test organisms only in the 0 – 30 cm soil layer except for F. candida that had a lower survival rate also in the 30 – 50 cm soil layer. There were no severe toxic effects detected on the test organisms. Furthermore in case of the aerobic heterotrophic cell number and S. alba germination a stimulating effect was revealed. However, the red mud itself was toxic, therefore the performed ecotoxicology tests have justified the removal of red mud from the soil surface after the disaster
- …