21,791 research outputs found

    An evolutionary complex systems decision-support tool for the management of operations

    Get PDF
    Purpose - The purpose of this is to add both to the development of complex systems thinking in the subject area of operations and production management and to the limited number of applications of computational models and simulations from the science of complex systems. The latter potentially offer helpful decision-support tools for operations and production managers. Design/methodology/approach - A mechanical engineering firm was used as a case study where a combined qualitative and quantitative methodological approach was employed to extract the required data from four senior managers. Company performance measures as well as firm technologies, practices and policies, and their relation and interaction with one another, were elicited. The data were subjected to an evolutionary complex systems (ECS) model resulting in a series of simulations. Findings - The findings highlighted the effects of the diversity in management decision making on the firm's evolutionary trajectory. The CEO appeared to have the most balanced view of the firm, closely followed by the marketing and research and development managers. The manufacturing manager's responses led to the most extreme evolutionary trajectory where the integrity of the entire firm came into question particularly when considering how employees were utilised. Research limitations/implications - By drawing directly from the opinions and views of managers, rather than from logical "if-then" rules and averaged mathematical representations of agents that characterise agent-based and other self-organisational models, this work builds on previous applications by capturing a micro-level description of diversity that has been problematical both in theory and application. Practical implications - This approach can be used as a decision-support tool for operations and other managers providing a forum with which to explore: the strengths, weaknesses and consequences of different decision-making capacities within the firm; the introduction of new manufacturing technologies, practices and policies; and the different evolutionary trajectories that a firm can take. Originality/value - With the inclusion of "micro-diversity", ECS modelling moves beyond the self-organisational models that populate the literature but has not as yet produced a great many practical simulation results. This work is a step in that direction

    QED can explain the non-thermal emission from SGRs and AXPs : Variability

    Get PDF
    Owing to effects arising from quantum electrodynamics (QED), magnetohydrodynamical fast modes of sufficient strength will break down to form electron-positron pairs while traversing the magnetospheres of strongly magnetised neutron stars. The bulk of the energy of the fast mode fuels the development of an electron-positron fireball. However, a small, but potentially observable, fraction of the energy (∼1033\sim 10^{33} ergs) can generate a non-thermal distribution of electrons and positrons far from the star. This paper examines the cooling and radiative output of these particles. Small-scale waves may produce only the non-thermal emission. The properties of this non-thermal emission in the absence of a fireball match those of the quiescent, non-thermal radiation recently observed non-thermal emission from several anomalous X-ray pulsars and soft-gamma repeaters. Initial estimates of the emission as a function of angle indicate that the non-thermal emission should be beamed and therefore one would expect this emission to be pulsed as well. According to this model the pulsation of the non-thermal emission should be between 90 and 180 degrees out of phase from the thermal emission from the stellar surface.Comment: 7 pages, 5 figures, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 2006, London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Scienc

    Optical waveguide manipulation of micro- and nano-spheres

    No full text
    Optical tweezers are well-established as a tool for non-contact, non-destructive handling of biological materials [1] and of inorganic nanospheres attached to biological molecules [2]. Recently, interest has grown in optical manipulation at surfaces [3] potentially as part of the toolbox of the "lab-on-a-chip". In particular, advances have been made in trapping and propulsion of metallic and dielectric micro- and nano-particles in the evanescent fields of optical waveguides [4,5], which may form part of a planar microsystem into which optical detection and spectroscopy of separated species could also be integrated. Optical waveguides embedded in surfaces represent a powerful means of controlling the distribution of optical intensity and intensity gradient at such surfaces, for particle control. In this paper, the design of optical waveguides and waveguide devices for trapping, propulsion and sorting of gold nanospheres and latex microspheres [6,7] will be described and recent experimental results presented and compared with theoretical models. The implications of these results for some proposed applications in the biosciences will be discussed

    A symptotic Bias for GMM and GEL Estimators with Estimated Nuisance Parameter

    Get PDF
    This papers studies and compares the asymptotic bias of GMM and generalized empirical likelihood (GEL) estimators in the presence of estimated nuisance parameters. We consider cases in which the nuisance parameter is estimated from independent and identical samples. A simulation experiment is conducted for covariance structure models. Empirical likelihood offers much reduced mean and median bias, root mean squared error and mean absolute error, as compared with two-step GMM and other GEL methods. Both analytical and bootstrap bias-adjusted two-step GMM estima-tors are compared. Analytical bias-adjustment appears to be a serious competitor to bootstrap methods in terms of finite sample bias, root mean squared error and mean absolute error. Finite sample variance seems to be little affected

    Loggerhead turtle (Caretta caretta) nest predation at Cape Range National Park

    Get PDF
    Most of the existing sea turtle populations worldwide are in decline. In particular, loggerhead turtles (Caretta caretta) are listed as endangered and loggerhead nesting populations in Eastern Australia have declined by 86% since the 1970s. However, whilst Eastern Australian loggerhead populations have been extensively studied and monitored, not much is known about the Western Australian nesting population

    Nonlocality of Two-Mode Squeezing with Internal Noise

    Full text link
    We examine the quantum states produced through parametric amplification with internal quantum noise. The internal diffusion arises by coupling both modes of light to a reservoir for the duration of the interaction time. The Wigner function for the diffused two-mode squeezed state is calculated. The nonlocality, separability, and purity of these quantum states of light are discussed. In addition, we conclude by studying the nonlocality of two other continuous variable states: the Werner state and the phase-diffused state for two light modes.Comment: 7 pages, 5 figures, submitted to PR

    An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity

    Get PDF
    In pathological conditions interpretation of functional magnetic resonance imaging (fMRI) results can be difficult. This is due to a reliance on the assumed coupling between neuronal activity and changes in cerebral blood flow (CBF) and oxygenation. We wanted to investigate the coupling between blood oxygen level dependant contrast (BOLD) and CBF time courses in epilepsy patients with generalised spike wave activity (GSW) to better understand the underlying mechanisms behind the EEG-fMRI signal changes observed, especially in regions of negative BOLD response (NBR). Four patients with frequent GSW were scanned with simultaneous electroencephalographic (EEG)-fMRI with BOLD and arterial spin labeling (ASL) sequences. We examined the relationship between simultaneous CBF and BOLD measurements by looking at the correlation of the two signals in terms of percentage signal change on a voxel-by-voxel basis. This method is not reliant on coincident activation. BOLD and CBF were positively correlated in patients with epilepsy during background EEG activity and GSW. The subject average value of the ΔCBF/ΔBOLD slope lay between +19 and +36 and also showed spatial variation which could indicate areas with altered vascular response. There was not a significant difference between ΔCBF/ΔBOLD during GSW, suggesting that neurovascular coupling to BOLD signal is generally maintained between states and, in particular, within areas of NBR

    BOLD and perfusion changes during epileptic generalised spike wave activity

    Get PDF
    It is unclear whether neurovascular coupling is maintained during epileptic discharges. Knowing this is important to allow appropriate inferences from functional imaging studies of epileptic activity. Recent blood oxygen level-dependent (BOLD) functional MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, parietal and posterior cingulate cortices during generalised spike wave activity (GSW). We hypothesized that GSW-related NBR commonly reflect decreased cerebral blood flow (CBF). We measured BOLD and cerebral blood flow responses using simultaneous EEG with BOLD and arterial spin label (ASL) fMRI at 3 T. Four patients with epilepsy were studied; two with idiopathic generalized epilepsy (IGE) and two with secondary generalized epilepsy (SGE). We found GSW-related NBR in frontal, parietal and posterior cingulate cortices. We measured the coupling between BOLD and CBF changes during GSW and normal background EEG and found a positive correlation between the simultaneously measured BOLD and CBF throughout the imaged volume. Frontal and thalamic activation were seen in two patients with SGE, concordant with the electro-clinical features of their epilepsy. There was striking reproducibility of the GSW-associated BOLD response in subjects previously studied at 1.5 T. Our results show a preserved relationship between BOLD and CBF changes during rest and GSW activity consistent with normal neurovascular coupling in patients with generalized epilepsy and in particular during GSW activity. Cortical activations appear to reflect areas of discharge generation whilst deactivations reflect changes in conscious resting state activity

    Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions

    Full text link
    We compute the finite temperature Casimir energy for massive scalar field with general curvature coupling subject to Dirichlet or Neumann boundary conditions on the walls of a closed cylinder with arbitrary cross section, located in a background spacetime of the form Md1+1×NnM^{d_1+1}\times \mathcal{N}^n, where Md1+1M^{d_1+1} is the (d1+1)(d_1+1)-dimensional Minkowski spacetime and Nn\mathcal{N}^n is an nn-dimensional internal manifold. The Casimir energy is regularized using the criteria that it should vanish in the infinite mass limit. The Casimir force acting on a piston moving freely inside the closed cylinder is derived and it is shown that it is independent of the regularization procedure. By letting one of the chambers of the cylinder divided by the piston to be infinitely long, we obtain the Casimir force acting on two parallel plates embedded in the cylinder. It is shown that if both the plates assume Dirichlet or Neumann boundary conditions, the strength of the Casimir force is reduced by the increase in mass. Under certain conditions, the passage from massless to massive will change the nature of the force from long range to short range. Other properties of the Casimir force such as its sign, its behavior at low and high temperature, and its behavior at small and large plate separations, are found to be similar to the massless case. Explicit exact formulas and asymptotic behaviors of the Casimir force at different limits are derived. The Casimir force when one plate assumes Dirichlet boundary condition and one plate assumes Neumann boundary condition is also derived and shown to be repulsive.Comment: 28 pages, 4 figure
    • …
    corecore