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Abstract: 
 
This papers studies and compares the asymptotic bias of GMM and generalized empirical likelihood (GEL) 
estimators in the presence of estimated nuisance parameters. We consider cases in which the nuisance 
parameter is estimated from independent and identical samples. A simulation experiment is conducted for 
covariance structure models. Empirical likelihood offers much reduced mean and median bias, root mean 
squared error and mean absolute error, as compared with two-step GMM and other GEL methods. Both 
analytical and bootstrap bias-adjusted two-step GMM estimators are compared. Analytical bias-adjustment 
appears to be a serious competitor to bootstrap methods in terms of finite sample bias, root mean squared 
error and mean absolute error. Finite sample variance seems to be little affected. 
 
Keywords: GMM, Empirical Likelihood, Exponential Tilting, Continuous Updating, 

Bias, Stochastic Expansions. 
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1 Introduction

It is now widely recognised that the most commonly used efficient two-step GMM (Hansen,

1982) estimator may have large biases for the sample sizes typically encountered in appli-

cations. See, for example, the Special Section, July 1996, of the Journal of Business and

Economic Statistics. To improve the small sample properties of GMM, a number of alterna-

tive estimators have been suggested which include empirical likelihood (EL) [Owen (1988),

Qin and Lawless (1994), and Imbens (1997)], continuous updating (CUE) [Hansen, Heaton,

and Yaron (1996)] and exponential tilting (ET) [Kitamura and Stutzer (1997) and Imbens,

Spady and Johnson (1998)]. As shown by Smith (1997), EL and ET share a common struc-

ture, being members of a class of generalized empirical likelihood (GEL) estimators. Newey

and Smith (2002) show that CUE and members of the Cressie-Read (1984) power family are

members of the GEL class; see also Smith (2001). All of these estimators and GMM have

the same asymptotic distribution but different higher-order asymptotic properties. In a ran-

dom sampling setting, Newey and Smith (2002) use the GEL structure, which helps simplify

calculations and comparisons, to analyze higher-order properties using methods like those of

Nagar (1959). Newey and Smith (2002) derive and compare the (higher-order) asymptotic

bias for all of these estimators. They also derive bias-corrected GMM and GEL estimators

and consider their higher-order efficiency.

Newey and Smith (2002) find that EL has two theoretical advantages. First, the asymp-

totic bias does not grow with the number of moment restrictions, while the bias of the others

often does. Consequently, for large numbers of moment conditions the bias of EL will be less

than the bias of the other estimators. The relatively low asymptotic bias of EL indicates

that it is an important alternative to GMM in applications. Furthermore, under a symme-

try condition, which may be satisfied in some instrumental variable settings, all the GEL

estimators inherit the small bias property of EL. The second theoretical advantage of EL is

that after it is bias-corrected, using probabilities obtained from EL, it is higher-order effi-

cient relative to the other estimators. This result generalizes the conclusions of Rothenberg

(1996) who showed that for a single equation from a Gaussian, homoskedastic linear simul-

taneous equations model the asymptotic bias of EL is the same as the limited information

[1]



maximum likelihood estimator and that bias-corrected EL is higher-order efficient relative

to a bias-corrected GMM estimator.

This paper reconsiders Newey and Smith’s (2002) results for scenarios in which GMM

and GEL estimation criteria involve a preliminary nuisance parameter estimator. This type

of situation arises in a number of familiar cases. Firstly, generated regressors employed in a

regression model context require a preliminary estimator of a nuisance parameter; see Pagan

(1984). Heckman’s (1979) sample selectivity correction is a special case with the nuisance

parameter estimator obtained from a selectivity equation. Secondly, covariance structure

models typically require an initial estimator of the mean of the data which itself may not

be of primary interest. Thirdly, but trivially, the use of a preliminary consistent GMM

estimator to estimate the efficient GMM metric may be regarded as a nuisance parameter

estimator and is thus a special case also. Consequently, the sample-splitting method for

efficient two-step GMM metric estimation proposed to ameliorate the bias of efficient GMM

estimators also falls within our analysis, the preliminary estimator being obtained from one

sub-sample with the other sub-sample then used to implement efficient GMM. See inter alia

Altonji and Segal (1996). The presence of the nuisance parameter estimator typically affects

the first order asymptotic distribution of the estimator for the parameters of interest in the

first and third examples, with sample-splitting inducing asymptotic inefficiency because of

the reduction in sample size. There is no loss in efficiency in the second example because

the Jacobian with respect to the nuisance parameter is null. However, the presence of the

nuisance parameter estimator alters the higher-order asymptotic bias in all of these examples

as compared to the nuisance parameter free situation.

To provide sufficient generality to deal with these various set-ups we define a sampling

structure which permits the nuisance parameter estimator to be obtained from either an

identical or independent sample. Sample selectivity and covariance structure models together

with the standard method for estimation of the efficient GMM metric are examples of the

first type whereas the sample-splitting example fits the latter category. We provide general

stochastic expansions for GMM and GEL estimators. These expansions are then specialised

for identical and independent samples and for the case when no nuisance parameters are

present. The analytical expressions for asymptotic bias obtained from these expansions
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may be consistently estimated as in Newey and Smith (2002) to bias-correct GMM or GEL

estimators. Some simulation experiments for covariance structure models show that these

analytical methods for bias-adjustment of the efficient two-step GMM estimator may be

efficacious as compared with bootstrap methods which are computationally more complex.

The outline of the paper is as follows. Section 2 describes the set-up and GMM and

GEL estimators. Section 3 details the asymptotic biases for situations which involve either

an independent or identical sample. A simulation experiment in section 4 for covariance

structures with a single nuisance parameter estimated from the same sample considers the

finite sample properties of GMM, CUE, ET and EL estimators and compares some bootstrap

and analytical bias-adjusted versions of the efficient two-step GMM estimator. Appendix A

contains general stochastic expansions for GMM and GEL estimators together with proofs

of the results in the paper. For ease of reference, some notation used extensively in the paper

is collected together in Appendix B.

2 The Estimators and Other Preliminaries

2.1 Moment Conditions

Consider the moment indicator gβ(z,α, β), an mβ-vector of functions of a data observation

z and the pβ-vector β of unknown parameters which are the object of inferential interest,

where mβ ≥ pβ. The moment indicator gβ(z,α, β) also depends on α, a pα-vector of nuisance
parameters. It is assumed that the true parameter vector β0 uniquely satisfies the moment

condition

E[gβ(z,α0,β0)] = 0,

where E[.] denotes expectation.

Estimation of the nuisance parameter vector α0 is based on the additional moment indi-

cator gα(x,α), anmα-vector of functions of a data observation x and α, where mα ≥ pα. The
true value α0 of the nuisance parameter vector is assumed to satisfy uniquely the moment

condition

E[gα(x,α0)] = 0.
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2.2 Sample Structure

Let zi, (i = 1, ..., nβ), and xj, (j = 1, ..., nα), denote samples of i.i.d. observations on the

data vectors z and x respectively. An additional i.i.d. sample of observations on z, zk,

(k = 1, ..., n), is also assumed to be available. This second sample of observations on z is

used to obtain the preliminary consistent estimator for β required to estimate the efficient

GMM metric. We identify the indices i, j and k uniquely with these respective samples

throughout the paper.

This sampling structure is sufficiently general to permit consideration of a number of

scenarios of interest, including the various examples outlined in the introduction. Firstly,

sample-splitting schemes are allowed by defining the samples zi, (i = 1, ..., nβ), and zk,

(k = 1, ..., n), to be independent. Secondly, situations in which these samples are identical

may be addressed by setting k = i, (i = 1, ..., nβ), which allows generated regressors such as

a sample selectivity correction to be considered in our analysis. Our framework also allows

for the possibility that the nuisance parameter estimator for α is obtained from a sample

which is either independent of or identical to the sample of observations zi, (i = 1, ..., nβ),

the latter case obtained by setting x = z and j = i, (i = 1, ..., nβ).

2.3 GMM and GEL Estimation of α0

Initially, we describe a two-step GMM estimator of the nuisance parameter α due to Hansen

(1982). Let

gαj (α) ≡ gα(xj,α), ĝα(α) ≡
nαX
j=1

gαj (α)/nα.

A preliminary estimator for α0 is given by α̃ = argminα∈A ĝα(α)0(Ŵαα)−1ĝα(α) where

A denotes the parameter space, and Ŵαα = Wαα +
Pnα
j=1 ξ

α(xj)/nα + Op(n
−1
α ) with W

αα

positive definite and E[ξα(x)] = 0. The two-step GMM estimator is one that satisfies

α̂2S = argmin
α∈A

ĝα(α)0[Ω̂αα(α̃)]−1ĝα(α), (2.1)

where Ω̂αα(α) ≡ Pnα
j=1 g

α
j (α)g

α
j (α)

0/nα.

We also examine as alternatives to GMM generalized empirical likelihood (GEL) esti-

mators, as in Smith (1997, 2001); see also Newey and Smith (2002). Let ϕ = (α0, µ0)0
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where µ is a mα-vector of auxiliary parameters, ρ
ϕ(.) be a function that is concave on its

domain, which is an open interval Vα containing zero, and ρϕv (.), ρϕvv(.) and ρϕvvv(.) denote
first, second and third derivatives of ρϕ(.) respectively. Without loss of generality we nor-

malise the first and second order derivatives of ρϕv (.) at 0 as ρ
ϕ
v (0) = ρϕvv(0) = −1. Let

Λ̂αnα(α) = {µ : µ0gαj (α) ∈ Vα, j = 1, ..., nα}.
The GEL estimation criterion is

P̂ϕ(ϕ) =
nαX
j=1

ρϕ(µ0gαj (α))/nα. (2.2)

Then a GEL estimator for α0 is obtained as the solution to the saddle point problem

α̂GEL = argmin
α∈A

sup
µ∈Λ̂αnα (α)

P̂ϕ(ϕ). (2.3)

The GEL criterion (2.2) admits a number of estimators as special cases: empirical likelihood

(EL) with ρϕ(v) = log(1 − v), [Imbens (1997) and Qin and Lawless (1994)], exponential
tilting (ET) with ρϕ(v) = − exp(v), [Imbens, Spady, and Johnson (1998) and Kitamura
and Stutzer (1997)], continuous updating (CUE) with ρϕ(v) quadratic and ρϕv (0) 6= 0 and

ρϕvv(0) < 0 [Hansen, Heaton, and Yaron (1996)] and the Cressie-Read (1984) power family

ρϕ(v) = −(1+ γv)(γ+1)/γ/(γ + 1) for some scalar γ. See Newey and Smith (2001) for further
discussion.

Let α̂ denote a consistent estimator for α0 obtained as described above in (2.1) or (2.3).

2.4 GMM and GEL Estimation of β0

Let

gβi (α, β) ≡ gβ(zi,α, β), ĝβ(α, β) ≡
nβX
i=1

gβi (α,β)/nβ.

A two-step GMM estimator of β is obtained using α̂ as a plug-in estimator of α in ĝβ(α,β).

The second sample of observations on z, zk, (k = 1, ..., n), is used to obtain a preliminary

consistent estimator β̃ for β0 defined by β̃ = argminβ∈B
Pn
k=1 g

β
k (α̂, β)

0(Ŵ ββ)−1
Pn
k=1 g

β
k (α̂,β)

where B denotes the parameter space, gβk (α, β) = gβ(zk,α,β), (k = 1, ..., n). Similar to above,
it is assumed that Ŵ ββ = W ββ +

Pnβ
i=1 ξ

β(zi)/nβ + Op(n
−1
β ) with W

ββ positive definite and
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E[ξβ(z)] = 0. This second sample is also used to estimate a GMM metric which has generic

form

Ω̂ββ(α, β) ≡
nX
k=1

gβk (α, β)g
β
k (α, β)

0/n.

This structure for the GMM metric allows a number of important special cases. Sample-

splitting schemes are included by specifying the samples zi, (i = 1, ..., nβ), and zk, (k =

1, ..., n), to be mutually independent. A set-up in which these samples are identical is

permitted. Hence, generated regressors are a special case of our analysis. Our framework

also allows the nuisance parameter estimator α̂ to be obtained from either an independent or

the same sample of observations; in the latter case, we define x = z and k = i, (i = 1, ..., nβ).

See section 3 for further details of these particular specialisations.

The two-step GMM estimator for β0 is one that satisfies

β̂2S = argmin
β∈B

ĝβ(α̂, β)0[Ω̂ββ(α̂, β̃)]−1ĝβ(α̂,β). (2.4)

For GEL estimators of β0, let θ = (β
0,λ0)0 where λ is a mβ-vector of auxiliary parameters,

ρθ(.) be a function that is concave on its domain, which is an open interval Vβ containing zero,
and ρθv(.), ρ

θ
vv(.) and ρ

θ
vvv(.) denote first, second and third derivatives of ρ

θ(.) respectively. As

above we normalise ρθv(0) = ρ
θ
vv(0) = −1. Let Λ̂βnβ(β) = {λ : λ0gβi (α̂, β) ∈ Vβ, i = 1, ..., nβ}.

When the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are mutually independent we

assume that they are pooled for GEL estimation. Let N = nβ + n and define n∗ = nβ if

the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are identical and n∗ = N if they are

independent. The GEL estimation criterion is then

P̂ θ(α̂, θ) =
n∗X
i=1

ρθ(λ0gβi (α̂,β))/n∗. (2.5)

A GEL estimator for β0 is obtained as the solution to the saddle point problem

β̂GEL = argmin
β∈B

sup
λ∈Λ̂βnβ (β)

P̂ θ(α̂, θ). (2.6)

Let λ̂GEL = supλ∈Λ̂βnβ (β)
P̂ θ(α̂, β̂GEL,λ).
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3 Higher Order Asymptotic Properties

Before detailing the various cases delineated in section 2, we discuss the asymptotic bias of

estimators α̂2S or α̂GEL for the nuisance parameter α. We use the generic notation α̂ for α̂2S

or α̂GEL where there is no possibility of confusion.

3.1 The Asymptotic Bias of the Nuisance Parameter Estimator

Let gαj = g
α
j (α0), G

α
j (α) = ∂g

α
j (α)/∂α

0, Gαj = G
α
j (α0) and

Gα = E[Gαj ], Ω
αα = E[gαj g

α0
j ], Σ

αα = (Gα0(Ωαα)−1Gα)−1,

Hα = ΣααGα0(Ωαα)−1, P α = (Ωαα)−1 − (Ωαα)−1GαΣααGα0(Ωαα)−1.

Under conditions stated in Newey and Smith (2002, Theorems 3.3 and 3.4), both two-step

GMM and GEL estimators for α admit stochastic expansions of the form

α̂ = α0 + ψ̃
α/
√
nα + (M

ϕ
α )
−1[Ãϕψ̃ϕ +

qϕX
r=1

ψ̃ϕrM
ϕ
r ψ̃

ϕ/2]/nα +Op(n
−3/2
α ),

where ψαj = −Hαgαj , ψ
ϕ
j = −[Hα0, P α]0gαj , ψ̃

α =
Pnα
j=1 ψ

α
j /
√
nα, ψ̃

ϕ =
Pnα
j=1 ψ

ϕ
j /
√
nα and

Ãϕ =
Pnα
j=1A

ϕ
j /
√
nα. The matrix (M

ϕ
α )
−1 = (Σαα,−Hα) and the matrices Mϕ and Ãϕ are

defined by analogy with M θ
θθ and Ã

θ given in eqs. (A.1) and (A.2) of Appendix A.

For GMM, to O(n−3/2α ),

Bias(α̂2S) = Hα(−aα + E[GαjHαgαj ])/nα −ΣααE[Gα0j P αgαj ]/nα
+Hα[gαj g

α0
j P

αgαj ]/nα

−Hα(E[GαjH
α
WΩ

ααPαgαj ] + E[g
α
j tr(G

α
jH

α
WΩ

ααPα)])/nα,

where Hα
W = (Gα0W−1Gα)−1Gα0W−1 and aα is an m-vector such that

aαs ≡ tr(ΣααE[∂2gαjs(α0)/∂α∂α0])/2, (s = 1, ...,mα), (3.1)

where gαjs(α) denotes the sth element of g
α
j (α). See Newey and Smith (2002, Theorem 4.1).

For GEL, to O(n−3/2α ),

Bias(α̂GEL) = Hα(−aα + E[GαjHαgαj ])/nα

+[1+ (ρϕvvv(0)/2)]H
αE[gαj g

α0
j P

αgαj ]/nα.
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See Newey and Smith (2002, Theorem 4.2). If ρϕvvv(0) = −2, then the asymptotic bias of
α̂GEL is identical to that of an infeasible GMM estimator with optimal linear combination

of moment indicators Gα0(Ωαα)−1gαj (α), a condition which is satisfied by the EL estimator;

see Newey and Smith (2002, Corollary 4.3). Moreover, this property is shared by any GEL

estimator when third moments are zero, E[gαjsg
α
j g

α0
j ] = 0, (s = 1, ...,mα); see Newey and

Smith (2002, Corollary 4.4).

To describe the results, let gβi = g
β
i (α0,β0), G

β
βi(α,β) = ∂g

β
i (α, β)/∂β

0, Gββi = G
β
βi(α0,β0),

Ωββ = E[gβi g
β0
i ], G

β
β = E[G

β
βi], Σ

ββ = (Gβ0β (Ω
ββ)−1Gββ)

−1,

Hβ = ΣβGβ0β (Ω
ββ)−1, P β = (Ωββ)−1 − (Ωββ)−1GββΣββGβ0β (Ωββ)−1.

We define aβ as an m-vector such that

aβr = tr(Σ
ββE[∂2gβir/∂β∂β

0])/2, (r = 1, ...,mβ).

Also let Gβαi(α, β) = ∂g
β
i (α, β)/∂α

0, Gβαi = G
β
αi(α0, β0), G

β
α = E[G

β
αi] and

ΣββW = (Gβ0β (W
ββ)−1Gββ)

−1, Hβ
W = ΣββWG

β0
β (W

ββ)−1.

3.2 Independent Samples

In this case, zi, (i = 1, ..., nβ), xj, (j = 1, ..., nα), and zk, (k = 1, ..., n), are independent i.i.d.

samples of observations on the variables z and x. We assume that α is estimated by α̂2S or

α̂GEL as described in section 2.

The precise form of the bias requires some additional notation. Let aβββ, a
β
βα and a

β
αα be

mβ-vectors such that

aβββr = tr(HβGβαΣ
ααGβ0αH

β0E[∂2gβir/∂β∂β
0])/2, aββαr = −tr(HβGβαΣ

ααE[∂2gβir/∂α∂β
0]),

aβααr = tr(ΣααE[∂2gβir/∂α∂α
0])/2, (r = 1, ...,mβ).

and cβββ and c
β
βα are pβ-vectors with elements

cβββr = tr(E[∂2gβ0i /∂β∂βr]P
βGβαΣ

ααGβ0αH
β0),

cββαr = −tr(E[∂2gβ0i /∂α∂βr]P βGβαΣαα), (r = 1, ..., pβ).

[8]



For the two-step GMM estimator β̂2S, let

Biasα0(β̂2S) = H
β(−aβ + E[GββiHβgβi ])/nβ − ΣββE[Gβ0βiP βgβi ]/nβ.

This asymptotic bias corresponds to that for β̂2S when α0 and Ω
ββ are known. For GEL

estimation the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are pooled. Hence,

Biasα0(β̂GEL) = Hβ(−aβ + E[GββiHβgβi ])/N

+[1+ (ρθvvv(0)/2)]H
βE[gβi g

β0
i P

βgβi ]/N,

where N = n + nβ, which is the asymptotic bias for β̂GEL after pooling when α0 is known.

See Newey and Smith (2002, Theorems 4.1 and 4.2).

The remainders in the following results are O(max[n−3/2, n−3/2α , n
−3/2
β ]) for GMM and

O(max[N−3/2, n−3/2α ]) for GEL.

For GMM:

Theorem 3.1: To O(max[n−3/2, n−3/2α , n
−3/2
β ]), if zi, (i = 1, ..., nβ), xj, (j = 1, ..., nα),

and zk, (k = 1, ..., n), are independent samples, the asymptotic bias of the two-step GMM

estimator is

Bias(β̂2S) = Biasα0(β̂2S)−HβGβαBias(α̂)

Hβ(−aβββ − aββα − aβαα)/nα −Σββ(−cβββ − cββα)/nα
−Hβ(E[GββiH

β
WG

β
αΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β
βiH

β
WG

β
αΣ

ααGβ0α P
β)])/n

+Hβ(E[GβαiΣ
ααGβ0α P

βgβi ] + E[g
β
i tr(G

β
αiΣ

ααGβ0α P
β)])/nα.

As in Newey and Smith (2002), we may interpret the terms comprising the bias of the

two step GMM estimator β̂2S. The first two terms of Biasα0(β̂2S), which is the asymptotic

bias for β̂2S when α0 and Ω
ββ are known, are the bias that would arise from the (infeasible)

optimal (variance minimising, Hansen, 1982) linear combination Gβ0β (Ω
ββ)−1gβ(z,α0, β). The

third term in Biasα0(β̂2S) arises because of inefficient estimation of the Jacobian G
β
β. The

second and third terms of Bias(β̂2S) reflect the presence of the nuisance parameter estimator

α̂ in the (infeasible) linear combination Gβ0β (Ω
ββ)−1gβ(z, α̂, β) whereas the fourth term arises

because of the presence of α̂ in estimation of the Jacobian Gββ. Likewise, the remaining

[9]



terms are due to the presence of the nuisance parameter estimator α̂ used in the estimation

of Ωββ. Overall therefore, the only role here for the preliminary two step GMM estimator β̃

in the estimation of Ωββ is through α̂; cf. α̂2S above and Newey and Smith (2002). That is,

if gβk (α, β) = g
β
k (β), (k = 1, ..., n), these remaining terms vanish. If the GMM estimator is

iterated at least once, Hβ
W should be replaced by Hβ.

We now turn to the bias formula for GEL based on the pooled samples zi, (i = 1, ..., nβ),

and zk, (k = 1, ..., n).

Theorem 3.2: To O(max[N−3/2, n−3/2α ]), where N = nβ + n, if zi, (i = 1, ..., nβ), xj,

(j = 1, ..., nα), and zk, (k = 1, ..., n), are independent samples, the asymptotic bias of the

GEL estimator is

Bias(β̂GEL) = Biasα0(β̂GEL)−HβGβαBias(α̂)

+Hβ(−aβββ − aββα − aβαα)/nα − Σββ(−cβββ − cββα)/nα
+ΣββE[Gβ0βiP

βGβαΣ
ααGβ0α P

βgβi ]/nα

+(ρθvvv(0)/2)E[g
β
i g

β0
i P

βGβαΣ
ααGβ0α P

βgβi ]/nα

−Hβ(E[GββiH
βGβαΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β0
βiP

βGβαΣ
ααGβ0αH

β0)])/nα

+Hβ(E[GβαiΣ
ααGβ0α P

βgβi ] + E[g
β
i tr(G

β0
αiP

βGβαΣ
αα)])/nα.

The first four terms are similar to those for GMM. The fifth and sixth terms arise because

of the presence of the nuisance parameter estimator α̂ in the implicit estimation of Ωββ and

its inefficient estimation; see Newey and Smith (2002, Theorem 2.3). The remaining terms

are similar to those for GMM except that Hβ
W is replaced by Hβ and would coincide if the

GMM estimator were iterated at least once. If Gβα = 0, which ensures that β̂GEL is first order

efficient and occurs, for example, if gβi (α,β) is linear in α, there is no effect due to the implicit

estimation of Ωββ except through Biasα0(β̂GEL) and, except for this term, Bias(β̂GEL) and

Bias(β̂2S) coincide.

From Theorem 3.2, all GEL estimators have the same bias when third moments are zero

as Biasα0(β̂GEL) is the same for all GEL estimators in this case. See Newey and Smith

(2002, Corollary 4.4).

Corollary 3.1: To O(max[N−3/2, n−3/2α ]), where N = nβ + n, if zi, (i = 1, ..., nβ),

[10]



xj, (j = 1, ..., nα), and zk, (k = 1, ..., n), are independent samples and E[gβirg
β
i g

β0
i ] = 0,

(r = 1, ...,mβ), then all GEL estimators possess identical asymptotic bias.

We now specialise these results for a standard sample-splitting scheme. Here the nui-

sance parameter vector α is not present. The remainders in the following results are

O(max[n−3/2, n−3/2β ]) for GMM and O(N−3/2) for GEL. The sample-split two-step GMM

estimator for β is one that satisfies

β̂2S = argmin
β∈B

ĝβ(β)0Ω̂ββ(β̃)−1ĝβ(β),

where Ω̂ββ(β) ≡ Pn
k=1 g

β
k (β)g

β
k (β)

0/n.

For GMM we have the following result:

Corollary 3.2: In the absence of nuisance parameters, to O(max[n−3/2, n−3/2β ]), if zi,

(i = 1, ..., nβ), and zk, (k = 1, ..., n), are independent samples, the asymptotic bias of the

two-step GMM estimator is

Bias(β̂2S) = Biasα0(β̂2S)

= Hβ(−aβ + E[GββiHβgβi ])/nβ − ΣββE[Gβ0βiP βgβi ]/nβ.

This asymptotic bias result is that in Newey and Smith (2002) when Ωββ is known.

In particular, it is clear that because of independent sampling comprising the sample-split

scheme an inefficient preliminary estimator for β0 may be used with no effect on asymptotic

bias. However, there would be implications for higher order variance.

We now turn to the bias formula for GEL which uses the pooled sample zi, (i = 1, ..., nβ),

and zk, (k = 1, ..., n).

Corollary 3.3: In the absence of nuisance parameters, to O(N−3/2), where N = nβ +n,

if zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are independent samples, the asymptotic bias of

the GEL estimator is

Bias(β̂GEL) = Biasα0(β̂GEL)

= Hβ(−aβ + E[GββiHβgβi ])/N + [1+ (ρ
θ
vvv(0)/2)]H

βE[gβi g
β0
i P

βgβi ]/N.

In comparison with the GMM bias, we find that the Jacobian term drops out, i.e. there is

no asymptotic bias from estimation of the Jacobian. As noted in Newey and Smith (2002),

[11]



the absence of bias from the Jacobian is due to its efficient estimation in the first-order

conditions. However, the last term reflects the implicit inefficient estimation of the variance

matrix Ωββ; see Newey and Smith (2002, Theorem 2.3). The deleterious effect of this term

relative to GMM will be offset at least partially by the use of the expanded pooled sample

size N . However, in certain circumstances this term can be eliminated altogether.

The following corollary is immediate from Newey and Smith (2002, Corollary 4.3).

Corollary 3.4: In the absence of nuisance parameters, to O(N−3/2), where N = nβ +n,

if zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are independent samples, then

Bias(β̂EL) = H
β(−aβ + E[GββiHβgβi ])/N.

EL uses an efficient second moment estimator which leads to the above result; see Newey

and Smith (2002, Theorem 2.3). Thus, for EL the bias is exactly the same as that for the

infeasible optimal GMM estimator with moment functions Gβ0β (Ω
ββ)−1gβ(z,β). This same

property would be shared by any GEL estimator with ρθvvv(0) = −2. It will also be shared
by any GEL estimator when third moments are zero as detailed in Corollary 3.1 above.

3.3 Identical Samples

In this case, the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), coincide. Hence, the

estimator Ω̂ββ(α,β) for Ωββ is based on the sample zi, (i = 1, ..., nβ). That is, k = i, n = nβ

and now Ω̂ββ(α, β) =
Pnβ
i=1 g

β
i (α, β)g

β
i (α, β)

0. Moreover, the nuisance parameter estimator α̂

is also based on the same sample zi, (i = 1, ..., nβ). That is, the samples zi, (i = 1, ..., nβ),

and xj, (j = 1, ..., nα), also coincide. So x = z, j = i and nα = nβ. The remainders in the

following results are thus O(n
−3/2
β ).

Let gβ.αi = gβi −GβαHαgαi ,

Ωββ.αα = E[gβ.αi gβ.α0i ],Ωββ.α = E[gβi g
β.α0
i ],Ωαβ.α = E[gαi g

β.α0
i ].

Also let aβββ, a
β
βα and a

β
αα be mβ-vectors such that

aβββr = tr(HβΩββ.ααHβ0E[∂2gβir/∂β∂β
0])/2, aββαr = tr(H

αΩαβ.αHβ0E[∂2gβir/∂β∂α
0]),

aβααr = tr(ΣααE[∂2gβir/∂α∂α
0])/2, (r = 1, ...,mβ),
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and cβββ and c
β
βα are pβ-vectors with elements

cβββr = tr(HβΩββ.ααP βE[∂2gβi /∂β
0∂βr]),

cββαr = tr(HαΩαβ.αP βE[∂2gβi /∂α
0∂βr]), (r = 1, ..., pβ).

For GMM we have the following result:

Theorem 3.3: To O(n
−3/2
β ), if the samples zi, (i = 1, ..., nβ), xj, (j = 1, ..., nα), and zk,

(k = 1, ..., n), are identical, the asymptotic bias of the two-step GMM estimator is

Bias(β̂2S) = −HβGβαBias(α̂)

+Hβ(−aβββ − aββα − aβαα + E[GββiHβgβ.αi ] + E[GβαiH
αgαi ])/nβ

−Σββ(−cβββ − cββα + E[Gβ0βiP βgβ.αi ])/nβ

+HβE[gβi g
β0
i P

βgβ.αi ]/nβ

−Hβ(E[GββiH
β
WΩ

ββ.ααP βgβi ] + E[g
β
i tr(G

β
βiH

β
WΩ

ββ.ααP β)])/nβ

−Hβ(E[GβαiH
αΩαβ.αP βgβi ] + E[g

β
i tr(G

β
αiH

αΩαβ.αP β)])/nβ.

If β̃ is iterated at least once, Hβ
W is replaced by Hβ. The second line arises because of

the presence of the nuisance parameter estimator α̂ in the (infeasible) linear combination

Gβ0β Ω
ββ−1gβ(z,α,β) and the third is due to the estimation of the Jacobian Gββ. The remaining

terms reflect using α̂ and β̃. The penultimate and final lines reflect estimation of Ωββ using

respectively the preliminary estimator β̃ and the nuisance parameter estimator α̂.

For GEL:

Theorem 3.4: To O(n
−3/2
β ), if the samples zi, (i = 1, ..., nβ), xj, (j = 1, ..., nα), and zk,

(k = 1, ..., n), are identical, the asymptotic bias of the GEL estimator is

Bias(β̂GEL) = −HβGβαBias(α̂)

+Hβ(−aβββ − aββα − aβαα + E[GββiHβgβ.αi ] + E[GβαiH
αgαi ])/nβ

−Σββ(−cβββ − cββα + E[Gβ0βiP β(Ωββ − Ωββ.αα)P βgβ.αi ])/nβ

+Hβ(E[gβi g
β0
i P

βgβ.αi ] + (ρθvvv(0)/2)E[g
β
i g

β0
i P

βΩββ.ααP βgβi ])/nβ

−Hβ(E[GββiH
βΩββ.ααP βgβi ] + E[g

β
i tr(G

β
βiH

βΩββ.ααP β)])/nβ

−Hβ(E[GβαiH
αΩαβ.αP βgβi ] + E[g

β
i tr(G

β
αiH

αΩαβ.αP β)])/nβ.
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The terms in Bias(β̂GEL) are mostly identical to those for β̂2S. The major differences are

the third line which reflects the inefficient estimation of the Jacobian term Gββ. This term

arises solely because of the presence of the nuisance parameter estimator α̂ and vanishes if the

nuisance parameter is absent; see Newey and Smith (2002, Theorem 2.3). Other differences

are, firstly, Hβ in place of Hβ
W in the penultimate line, a difference which is eliminated if two-

step GMM is iterated once, and, secondly, the additional terms ΣββE[Gβ0βiP
βΩββ.ααP βgβ.αi ]

and (ρθvvv(0)/2)E[g
β
i g

β0
i P

βΩββ.ααP βgβi ] which arise through the implicit estimation of Ω
ββ

using both α̂ and β̂GEL.

From Theorem 3.4, all GEL estimators have the same bias when third moments are zero;

cf. Corollary 3.1. See Newey and Smith (2002, Corollary 4.4).

Corollary 3.5: To O(n
−3/2
β ), if the samples zi, (i = 1, ..., nβ), xj, (j = 1, ..., nα), and zk,

(k = 1, ..., n), coincide and E[gβirg
β
i g

β0
i ] = 0, (r = 1, ...,mβ), then all GEL estimators possess

identical asymptotic bias.

The above results in Theorems 3.3 and 3.4 may be specialised straightforwardly to deal

with when zi, (i = 1, ..., nβ), and xj , (j = 1, ..., nα), are independent samples. In this case,

Ωββ.αα = Ωββ +GβαΣ
ααGβ0α , Ω

ββ.α = Ωββ and Ωαβ.α = −ΩααHα0Gβ0α . Also, let a
β
ββ, a

β
βα, a

β
αα,

cβββ and c
β
βα be defined as in section 3.2; that is, a

β
ββ, a

β
βα and a

β
αα are mβ-vectors such that

aβββr = tr(HβGβαΣ
ααGβ0αH

β0E[∂2gβir/∂β∂β
0])/2, aββαr = −tr(HβGβαΣ

ααE[∂2gβir/∂α∂β
0]),

aβααr = tr(ΣααE[∂2gβir/∂α∂α
0])/2, (r = 1, ...,mβ).

and cβββ and c
β
βα are pβ-vectors with elements

cβββr = tr(E[∂2gβ0i /∂β∂βr]P
βGβαΣ

ααGβ0αH
β0),

cββαr = −tr(E[∂2gβ0i /∂α∂βr]P βGβαΣαα), (r = 1, ..., pβ).

The remainders in the following corollaries are O(max[n−3/2α , n
−3/2
β ]). Let

Biasα0(β̂2S) = Hβ(−aβ + E[GββiHβgβi ])/nβ − ΣββE[GββiP βgβi ]/nβ
+HβE[gβi g

β
i P

βgβi ]/nβ

−Hβ(E[GββiH
β
WΩ

ββP βgβi ] + E[g
β
i tr(G

β
βiH

β
WΩ

ββP β)])/nβ,
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Biasα0(β̂GEL) = Hβ(−aβ + E[GββiHβgβi ])/nβ

+[1+ (ρθvvv(0)/2)])H
βE[gβi g

β
i P

βgβi ]/nβ,

which are the biases for β̂2S and β̂GEL when α0 is known; see Newey and Smith (2002,

Theorems 4.1 and 4.2).

Corollary 3.6: To O(max[n−3/2α , n−3/2β ]), if zi, (i = 1, ..., nβ), and xj, (j = 1, ..., nα), are

independent samples and the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are identical,

the asymptotic bias of the two-step GMM estimator is

Bias(β̂2S) = Biasα0(β̂2S)−HβGβαBias(α̂)

+Hβ(−aβββ − aββα − aβαα)/nα − Σββ(−cβββ − cββα)/nα
−Hβ(E[Gβ0βiH

β
WG

β
αΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β0
βiH

β
WG

β
αΣ

ααGβ0α P
β)])/nα

+Hβ(E[GβαiΣ
ααGβ0α P

βgβi ] + E[g
β
i tr(G

β
αiΣ

ααGβ0α P
β)])/nα.

Corollary 3.7: To O(max[n−3/2α , n−3/2β ]), if zi, (i = 1, ..., nβ), and xj, (j = 1, ..., nα), are

independent samples and the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are identical,

the asymptotic bias of the GEL estimator is

Bias(β̂GEL) = Biasα0(β̂GEL)−HβGβαBias(α̂)

+Hβ(−aβββ − aββα − aβαα)/nα − Σββ(−cβββ − cββα)/nα
+ΣββE[Gβ0βiP

βGβαΣ
ααGβ0α P

βgβi ]/nα

+(ρθvvv(0)/2)E[g
β
i g

β0
i P

βGβαΣ
ααGβ0α P

βgβi ])/nα

−Hβ(E[GββiH
βGβαΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β
βiH

βGβαΣ
ααGβ0α P

β)])/nα

+Hβ(E[GβαiΣ
ααGβ0α P

βgβi ] + E[g
β
i tr(G

β
αiΣ

ααGβ0α P
β)])/nα.

The representations given in Corollaries 3.6 and 3.7 are identical to those of Theorems

3.1 and 3.2 respectively. The only differences are in Biasα0(β̂2S) and Biasα0(β̂GEL). Here,

because of the use of identical samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), Biasα0(β̂2S)

additionally includes terms associated with the preliminary estimator β̃ and the estimation

of Ωββ. For GEL, the only difference is the use of single sample nβ rather than the pooled

sampleN = nβ+n when the samples zi, (i = 1, ..., nβ), and zk, (k = 1, ..., n), are independent.
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4 Simulation Experiments for Covariance Structure Mod-

els

Our investigation concerns models of covariance structure estimated on the same sample.

Therefore, the asymptotic bias expressions in section 3.2 and, in particular, Theorems 3.3

and 3.4 apply. Altonji and Segal (1996) carried out an extensive analysis of the finite sample

properties of GMM estimators for covariance structure models and found that the efficient

two-step GMM estimator is severely downward biased in small samples for most distribu-

tions and in relatively large samples for “badly behaved” distributions. They argue that this

poor performance is due to the correlation between the estimated second moments used to

estimate the optimal weighting matrix and the moment indicators. Thus, as the theoretical

results in section 3 reveal, both equally weighted GMM, which uses the identity matrix as

weighting matrix, and efficient GMM estimation based on a sample-split estimator for the

optimal weighting matrix produce parameter estimators with significantly improved proper-

ties in finite samples; see Theorem 3.3, Corollary 3.2 and also Horowitz (1998). The latter

author also considered a bias-adjusted GMM estimator using the re-centred nonparametric

bootstrap of Hall and Horowitz (1996) which is outlined below. This estimator, although

biased in some cases, performed much better than the standard two-step GMM estimator.

The particular focus of attention of this section is GMM and GEL estimators for a com-

mon variance parameter constructed from a simulated panel data set in circumstances where

the mean parameter is assumed unknown and is treated as a nuisance parameter. We initially

consider the finite sample bias properties of the two-step GMM estimator, continuous up-

dating estimator (CUE), exponential tilting (ET) and empirical likelihood (EL) estimators.

We also examine analytical bias-adjustment methods for two-step GMM based on Theorem

3.3 and compare their finite sample properties with those of various forms of bootstrap bias-

adjusted two-step GMM, both of which techniques achieve bias-adjustment of the two-step

GMM estimator to the order of asymptotic approximation considered in this paper.
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4.1 Bootstrap Bias-Adjustment

The generic form of bootstrap bias-adjustment for the two-step GMM estimator β̂2S is as

follows. The original data zi, (i = 1, ..., nβ), is sampled independently with replacement to

yield a bootstrap sample of size nβ and a two-step GMM estimator thereby calculated from

this bootstrap sample. This process is independently replicated. The bias of the two-step

GMM estimator is estimated as the difference between the mean of the resultant bootstrap

two-step GMM estimator empirical distribution and the two-step GMM estimator β̂2S. The

bootstrap bias-adjusted two-step GMM estimator is then β̂2S less the bias estimator.

We consider three forms of bootstrap bias-adjusted two-step GMM estimator. The first

uses the standard non-parametric (NP) bootstrap. This resampling scheme applies equal

weights 1/nβ to each observation zi, (i = 1, ..., nβ). That is, resampling is based on the em-

pirical distribution function Fnβ(z) =
Pnβ
i=1 1(zi ≤ z)/nβ, where 1(.) is an indicator function.

Direct application of the NP bootstrap in the GMM framework seems to be unsatisfactory

in many cases though. When the model is over-identified as in our experiments, while the

population moment condition E[gβ(z,α0,β0)] = 0 is satisfied, the estimated sample mo-

ments are typically non-zero, that is, there is typically no β such that EFnβ [g
β(z, α̂, β)] = 0

where EFnβ [.] denotes expectation taken with respect to Fnβ . Therefore, Fnβ may be a

poor approximation to the underlying distribution of the data and, hence, the NP boot-

strap may not yield a substantial improvement over first-order asymptotic theory in stan-

dard applications of GMM. A second resampling scheme is the re-centred non-parametric

(RNP) bootstrap; see Hall and Horowitz (1996). This method replaces the moment in-

dicator gβ(z, α̂, β) used in the GMM estimation criterion (2.4) by the re-centred moment

indicator gβ∗(z, α̂, β) = gβ(z, α̂, β)−EFnβ [gβ(z, α̂, β̂2S)]. As EFnβ [gβ(z, α̂, β̂2S)] = ĝβ(α̂, β̂2S),
this re-centring guarantees that the moment condition is satisfied with respect to Fnβ , that

is, EFnβ [g
β∗(z, α̂, β̂2S)] = 0. Apart from the reformulation of the moment indicator, the

RNP bootstrap is identical in execution to the NP bootstrap. The third bootstrap sug-

gested by Brown, Newey and May (1997) employs an alternative empirical distribution to

Fnβ for resampling which also ensures that the moment condition is satisfied. That is,

the observations zi, (i = 1, ..., nβ), are assigned different rather than equal weights, the

[17]



moment indicator gβ(z, α̂, β) remaining unaltered. Given the two-step GMM estimator

β̂2S, let λ̂2S = arg supλ∈Λ̂βnβ (β̂2S)
P̂ θ(α̂, β̂2S,λ), cf. (2.6). Each observation zi is assigned

the implied probability π̂2Si = ρθv(kθλ̂
0
2Sg

β
i (α̂, β̂2S))/

Pnβ
j=1 ρ

θ
v(kθλ̂

0
2Sg

β
j (α̂, β̂2S)) associated with

the two-step GMM estimator, (i = 1, ..., nβ). The implied empirical distribution function

FGELnβ
(z) =

Pnβ
i=1 π̂

2S
i 1(zi ≤ z) is thus obtained from the first step of a GEL estimation

procedure and is denoted as (first-step GEL) FSGEL. From the first order conditions for

GEL, the moment condition is satisfied with respect to FGELnβ
as

Pnβ
i=1 π̂

2S
i g

β
i (α̂, β̂2S) = 0

and, thus, EFGELnβ
[gβ(z, α̂, β̂2S)] = 0, where E

GEL
Fnβ

[.] denotes expectation taken with respect

to FGELnβ
. We employ the EL criterion P̂ θ(α̂, β̂2S,λ) =

Pnβ
i=1 log(1 − λ0gβj (α̂, β̂2S))/nβ in our

experiments. In the absence of nuisance parameters, the FSGEL bootstrap is asymptotically

efficient relative to any bootstrap based on the empirical distribution function Fnβ , as shown

by Brown, Newey and May (1997).

4.2 Analytical Bias-Adjustment

We also consider direct bias-adjustment of β̂2S by subtraction of an estimator for Bias(β̂2S)

given in Theorem 3.3; cf. Newey and Smith (2002, Theorem 5.1). We consider four forms

of bias estimator. The first estimator for Bias(β̂2S), BCa, uses the empirical distribution

function Fnβ for obtaining expectation estimators, i.e. functions of observation i are equally

weighted by 1/nβ, (i = 1, ..., nβ). The second estimator, BCb, uses the FSGEL empirical

distribution function FGELnβ
, i.e. functions of observation i are weighted by π̂2Si , (i = 1, ..., nβ).

The third, BCc, uses Fnβ but with the true parameter values α0 and β0 substituted. The

final estimator, BCd, employs the simulated counterpart of the expression for the asymptotic

bias of β̂2S given in Theorem 3.3.

4.3 Experimental Design

We consider an experimental design analyzed by Altonji and Segal (1996) where the ob-

jective is the estimation of a common population variance β0 for a scalar random variable

zt, (t = 1, ..., T ), from observations on a balanced panel covering T = 10 time periods.

Thus, z = (z1, ..., zT )
0. We assume that nβ observations are available on z and that zti
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is independent over t and i.i.d. over i. We consider the case where the mean α0 of z

is unknown. Hence, the results of section 3.2 apply. The nuisance parameter estima-

tor is α̂ = (α̂1, ..., α̂T )
0, where the unbiased estimator α̂t =

Pnβ
i=1 zti/nβ, (t = 1, ..., T ).

The moment indicator vector is gβ(z,α, β) = m(z,α) − ιβ, where ι is a T -vector of units,
m(z,α) = (m1(z1,α1), ...,mT (zT ,αT ))

0 and

mt(zt,αt) = nβ(zt − αt)2/(nβ − 1), (t = 1, ..., T ).

Thus, m̂(α̂) =
Pnβ
i=1m(zi, α̂)/nβ is an unbiased estimator for ιβ0. Here pβ = 1, mβ = T and

pα = mα = T .

In this study, all observations zti are i.i.d. across both t and i although the common mean

assumption is ignored in estimation. Although the elements of m̂(α̂) are independent, the

estimated variance matrix Ω̂ββ(α̂, β̃) =
Pnβ
i=1 g

β
i (α̂, β̃)g

β
i (α̂, β̃)

0/nβ ignores this information.

Seven different distributions for zt, scaled to have mean α0 = 0 and variance β0 = 1, were

considered for two sample sizes nβ = 100, 500. In each experiment, 1000 replications were

performed.

In this framework, the two-step GMM estimator is a weighted mean of the sample vari-

ances, β̂2S = w
0m̂(α̂) =

Pnβ
i=1w

0mi(α̂)/nβ, where w = (ι
0Ω̂ββ(α̂, β̃)−1ι)−1ι0Ω̂ββ(α̂, β̃)−1. The

preliminary estimator β̃ is obtained using equal weights (w = ι/T ). For GEL estimators,

as Gββi = −ι, it can be straightforwardly shown that β̂GEL = nβ
Pnβ
i=1 π̂iι

0mi(α̂)/T (nβ − 1)
where π̂GELi = ρv(λ̂

0
GELg

β
i (α̂, β̂GEL))/

Pnβ
j=1 ρv(λ̂

0
GELg

β
j (α̂, β̂GEL)), (i = 1, ..., nβ). The two-

step GMM estimator ascribes equal weights over i whereas GEL applies the GEL implied

probabilities π̂GELi . Over t, GMM assigns distinct weights given by the vector w while for

GEL each time period receives an equal weight.

A number of important implications of this structure for the results of section 3.2 may be

deduced. Firstly, as Gβαi = −2nβdiag(zi1−α1, ..., ziT−αT )/(nβ−1) and, thus, Gβα = 0, GMM
or GEL estimators for β0 are first order efficient. Secondly, as G

β
βi = −ι from the linearity

of gβ(z,α, β) in β, substantial simplifications result in the asymptotic bias expressions of

Theorems 3.3 and 3.4. In particular, it is evident from the asymptotic biases given in

Theorems 3.3 and 3.4 that those for two-step and iterated GMM are identical and, moreover,

that CUE also possesses an identical asymptotic bias.
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To be more precise, for these experiments aβββ = aββα = 0 and cβββ = cββα = 0 from the

linearity of gβ(z,α,β) in β. Also aβαα = 2[nβ/(nβ − 1)]ιβ0. As gβ.αi = gβi , Ω
ββ.αα = Ωββ,

Ωββ.α = Ωββ and Ωαβ.α = E[gαi g
β0
i ] = Ω

αβ. Therefore, from Theorems 3.3 and 3.4,

Bias(β̂2S) = Biasα0(β̂2S)

+Hβ(−aβαα + E[GβαiHαgαi ])/nβ

−Hβ(E[GβαiH
αΩαβP βgβi ] + E[g

β
i tr(G

β
αiH

αΩαβP β)])/nβ,

and

Bias(β̂GEL) = Biasα0(β̂GEL)

+Hβ(−aβαα + E[GβαiHαgαi ])/nβ

−Hβ(E[GβαiH
αΩαβP βgβi ] + E[g

β
i tr(G

β
αiH

αΩαβP β)])/nβ.

Therefore, there is no role for Bias(α̂). Moreover, Bias(β̂2S) and Bias(β̂GEL) only differ

in Biasα0(β̂2S) and Biasα0(β̂GEL). Because g
β(z,α, β) = m(z,α) − ιβ is linear in β and,

thus, Gββi = −ι is non-stochastic, the asymptotic biases for β̂2S and β̂GEL when the nuisance
parameter α0 is known reduce to

Biasα0(β̂2S) = HβE[gβi g
β0
i P

βgβi ]/nβ,

Biasα0(β̂GEL) = [1+ (ρθvvv(0)/2)]H
βE[gβi g

β0
i P

βgβi ]/nβ.

As there is no effect due to the preliminary estimator β̃, it is evident from Bias(β̂2S) that

the asymptotic biases for the two-step GMM and iterated GMM estimators are identical.

Moreover, from Biasα0(β̂GEL), they also coincide with that of CUE as ρ
θ
vvv(0) = 0. Further-

more, it is only the asymmetry of gβi which accounts for the differences in asymptotic biases

between two-step GMM and other GEL estimators. Note that, apart from −Hβaβαα/nβ, the

second and third lines in Bias(β̂2S) and Bias(β̂GEL) vanish if zti is symmetrically distributed;

that is, Bias(β̂2S) = Biasα0(β̂2S)−Hβaβαα/nβ and Bias(β̂GEL) = Biasα0(β̂GEL)−Hβaβαα/nβ.

Furthermore, Biasα0(β̂EL) = 0 and Biasα0(β̂GEL) = 0 if ρ
θ
vvv(0) = −2.
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4.4 Results

The tables report estimated mean and median bias (as a percentage), 0.05 and 0.95 quantiles,

standard error (SE), root mean squared error (RMSE) and median absolute error (MAE) of

four asymptotically first-order equivalent methods for estimating moment condition models,

two-step GMM (2S-GMM), CUE, ET and EL estimators.

Table 1 considers a sample size of nβ = 100. The results obtained for the two-step

GMM estimator are very similar to those presented by Altonji and Segal (1996). As in their

study, this estimator is clearly downward biased. This distortion is particularly marked for

“badly-behaved” distributions, namely thicker-tailed symmetric (t5) and long-tailed skewed

(lognormal and exponential) distributions. As noted above, the asymptotic bias expressions

for GMM and GEL involve further terms for asymmetric distributions. Note, however, that

these expressions are not strictly valid for the t5 distribution as moments of order greater

than 4 do not exist. The worst case is given by the lognormal distribution, where the biases

(MAE) are −0.415 and −0.430 (0.430). In this case the empirical 0.95 confidence interval
does not cover the true value β0 = 1.

Table 1 about here

Although, as noted above, the biases of GMM and CUE should be similar, Table 1 indicates

that the results for CUE are in fact worse than for the two-step GMM estimator. Because the

bias expressions for GMM and GEL only differ according to Biasα0(β̂2S) and Biasα0(β̂GEL),

ET and EL estimators should display better finite sample properties relative to GMM and

CUE. In particular, Biasα0(β̂2S) = 2Biasα0(β̂ET ) and Biasα0(β̂EL) = 0. While all methods

have very similar standard errors (SE), the improvement for ET and EL in terms of both

mean and median bias, root mean square error (RMSE) and mean absolute error (MAE)

is clear. This is particularly marked for EL estimation. For ET, the improvements over

GMM are rather more modest than those for EL as predicted by our theoretical results.

However, although bias is not completely eliminated, especially for the skewed lognormal

and exponential distributions, even for these cases, EL shows a marked improvement over

two-step GMM.

Table 2 about here
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Table 2 deals with the increased sample size nβ = 500. Overall, all estimators display

less bias with reduced SE, RMSE and MAE. The general pattern across estimators revealed

for the smaller sample size nβ = 100 is still apparent. CUE is somewhat worse than two-step

GMM with ET delivering rather moderate improvements while EL dominates all other esti-

mators in terms of mean and median biases, RMSE and MAE. For the skewed distributions,

lognormal and exponential, EL offers substantially reduced bias, RMSE and MAE relative

to other estimators including ET with very little or no increase in SE. For a number of the

symmetric distributions, EL is able to eliminate bias more or less entirely.

Table 3 about here

The results reported in Table 3 with nβ = 100 use 100 bootstrap samples in each replica-

tion. In all cases, the bootstrap methods substantially reduce the bias of the two-step GMM

estimator, although at the expense of a rather modest increase in SE. RMSE and MAE are

also reduced, also quite substantially in the asymmetric cases for the RNP and FSGEL boot-

strap methods. Clearly, the gain from bias reduction outweighs the increased contribution

of SE to RMSE. The behaviour of these methods is not uniform, however, but overall the

performances of RNP and FSGEL seem quite similar. It appears that RNP and FSGEL are

rather better than NP which may be accounted for by the sample moments evaluated at

the two-step GMM estimator being far from zero in these experiments. The performance of

the feasible bias adjustment methods BCa and BCb is also quite encouraging leading to a

substantial reduction in bias relative to β̂2S in the “badly behaved” cases with BCb tending

to dominate BCa. Like the bootstrap methods, SE increases somewhat for the analytical

methods but again is less important compared to bias reduction for RMSE which in some

cases is also reduced by a non-trivial amount. The results for BCc and BCd indicate that

the theoretical expression for asymptotic bias in Theorem 3.3 accounts for the vast majority

of finite sample bias. Comparing bootstrap and bias adjustment methods, BCb is rather

similar to RNP and FSGEL in most cases in terms of bias reduction, RMSE and MAE.

Therefore, BCb appears to be an efficacious rival to bootstrap methods.

Table 4 about here
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Similar qualitative conclusions may be drawn from Table 4 for nβ = 500 with two-step

GMM bias being more or less eliminated for a number of symmetric distributions. Again,

for the “badly behaved” cases, bias is not eliminated entirely but is reduced substantially by

RNP, FSGEL bootstrap bias-adjustment methods and the analytical approach BCb.

5 Conclusions

The context of this paper is the estimation of moment condition models in situations where

the moment indicator depends on a nuisance parameter. The particular concern is the

analysis of the higher-order bias of GMM and GEL estimators when a plug-in estimator

is employed for the nuisance parameter. Such an environment covers a number of cases of

interest including the use of generated regressors and sample-splitting methods. Expressions

for the higher-order bias of these estimators is obtained in a general framework which allows

specialisation to cases when the nuisance parameter is estimated from either an identical or

an independent sample.

The efficacy of these asymptotic bias expressions is explored in a number of simulation

experiments for covariance structure models. A rather pleasing conclusion from these exper-

iments is that the mean and median bias, root mean squared error and mean absolute error

properties of empirical likelihood represent a substantial improvement of those of two-step

GMM, continuous updating and exponential tilting estimators with little or no increase in

variance. Further experiments comparing various bootstrap bias-adjustment methods with

those based on estimated analytical asymptotic bias expressions indicate that the less compu-

tationally intensive analytical methods are efficacious rivals to their bootstrap counterparts.

An interesting avenue for future research would be an exploration of the usefulness of

the asymptotic bias expressions for bias-adjustment of GEL estimators such as continuous

updating, exponential tilting and empirical likelihood.
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Appendix A: Proofs

We find the asymptotic bias using a stochastic expansion for each estimator. Regularity

conditions for the results given below may be obtained by suitable adaptation of those in

Newey and Smith (2002). Lemmas A.1-A.3 generalise Newey and Smith (2002, Lemmas

A4-A6) to the nuisance parameter context.

Lemma A.1 Suppose the estimators θ̂ and α̂ and vector of functions mθ(z, θ,α) satisfy

(a) θ̂ = θ0 + Op(max[n
−1/2, n−1/2α , n

−1/2
β ]), α̂ = α0 + ψ̃

α/
√
nα +Q

α(ãϕ, ψ̃ϕ)/nα + Op(n
−3/2
α ),

ψ̃α = Op(1), Q
α(ãϕ, ψ̃ϕ) = Op(1); (b) m̂

θ(θ̂, α̂) =
Pnβ
i=1m

θ(zi, θ̂, α̂)/nβ = 0 w.p.a.1 and

m̂θ(θ0,α0) = Op(max[n
−1/2, n−1/2α , n

−1/2
β ]), Ãθ = n

1/2
β [∂m̂θ(z, θ0,α0)/∂θ

0−M θ] = Op(max[n
−1/2, n−1/2α , n

−
β

Ãθα = n
1/2
β [∂m̂θ(z, θ0,α0)/∂α

0−M θ
α] = Op(max[n

−1/2, n−1/2α , n
−1/2
β ]), whereM θ = E[∂mθ(z, θ0,α0)/∂θ

0]

and Mθ
α = E[∂m(z; θ0,α0)/∂α

0]; (c) mθ(z, θ,α) is two times continuously differentiable and

for some d(z)with E[d(z)] <∞ on a neighbourhood of (θ0,α0)

k∂2m(z, θ,α)/∂(θ,α)r∂(θ,α)s − ∂2m(z, θ0,α0)/∂(θ,α)r∂(θ,α)sk ≤ d(z)k(θ,α)− (θ0,α0)k

on a neighbourhood of (θ0,α0); (d) E[m
θ(z, θ0,α0)] = 0 and M

θ exists and is nonsingular.

Let

M θ
θθr = E[∂2m(z, θ0,α0)/∂θr∂θ

0],M θ
θαs = E[∂

2m(z, θ0,α0)/∂αs∂θ
0],

Mθ
αθr = E[∂2m(z, θ0,α0)/∂θr∂α

0],M θ
ααs = E[∂

2m(z, θ0,α0)/∂αs∂α
0],

ψ̃θ = −n1/2β (Mθ)−1m̂θ(θ0,α0).

Then

θ̂ = θ0 + ψ̃
θ/
√
nβ − (M θ)−1M θ

α(ψ̃
α/
√
nα +Q

α(ãϕ, ψ̃ϕ)/nα)

−(Mθ)−1[Ãθ(ψ̃θ/
√
nβ −M θ−1M θ

αψ̃
α/
√
nα)
√
nβ + Ã

θ
αψ̃

α/
√
nαnβ]

−(Mθ)−1[
qθX
r=1

e0r[ψ̃
θ/
√
nβ − (M θ)−1Mθ

αψ̃
α/
√
nα]M

θ
θθr[ψ̃

θ/
√
nβ − (Mθ)−1Mθ

αψ̃
α/
√
nα]]/2

−(Mθ)−1
pαX
s=1

e0sψ̃
ϕM θ

θαs[ψ̃
θ/
√
nβ − (M θ)−1M θ

αψ̃
α/
√
nα]/2

√
nα

−(Mθ)−1[
qθX
r=1

e0r[ψ̃
θ/
√
nβ − (M θ)−1Mθ

αψ̃
α/
√
nα]M

θ
αθrψ̃

α/
√
nα]/2
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−(Mθ)−1[
pαX
s=1

e0sψ̃
αMθ

ααsψ̃
α/nα]/2 +Op(max[n

−3/2, n−3/2α , n
−3/2
β ]).

Proof. Let m̂θ(θ,α) =
Pnβ
i=1m

θ
i (θ,α)/nβ, M̂

θ(θ,α) =
Pnβ
i=1[∂m

θ
i (θ,α)/∂θ

0]/nβ and M̂ θ
α(θ,α) =Pnβ

i=1[∂m
θ
i (θ,α)/∂α

0]/nβ. A Taylor expansion with Lagrange remainder gives

0 = m̂θ(θ0,α0) + M̂
θ(θ0,α0)(θ̂ − θ0) + M̂θ

α(θ0,α0)(α̂− α0)
+[

qθX
r=1

(θ̂r − θ0r)[∂M̂ θ(θ̄, ᾱ)/∂θr](θ̂ − θ0) +
pαX
s=1

(α̂s − α0s)[∂M̂ θ(θ̄, ᾱ)/∂αs](θ̂ − θ0)

+
qθX
r=1

(θ̂r − θ0r)[∂M̂ θ
α(θ̄, ᾱ)/∂θr](α̂− α0) +

pαX
s=1

(α̂s − α0s)[∂M̂θ
α(θ̄, ᾱ)/∂αs](α̂− α0)]/2.

Then adding and subtracting Mθ(θ̂ − θ0) and solving gives

θ̂ = θ0 − (Mθ)−1[m̂θ(θ0,α0) +M
θ
α(α̂− α0)]

−(Mθ)−1[(M̂θ(θ0,α0)−M θ)(θ̂ − θ0) + (M̂θ
α(θ0,α0)−M θ

α)(α̂− α0)]
−(Mθ)−1[

qθX
r=1

(θ̂r − θ0r)[∂M̂ θ(θ̄, ᾱ)/∂θr](θ̂ − θ0) +
pαX
s=1

(α̂s − α0s)[∂M̂ θ(θ̄, ᾱ)/∂αs](θ̂ − θ0)

+
qθX
r=1

(θ̂r − θ0r)[∂M̂ θ
α(θ̄, ᾱ)/∂θr](α̂− α0) +

pαX
s=1

(α̂s − α0s)[∂M̂ θ
α(θ̄, ᾱ)/∂αs](α̂− α)]/2

so that θ̂ = θ0+Op(max[n
−1/2, n−1/2α , n

−1/2
β ]) and hence θ̂−θ0 = −(Mθ)−1[m̂θ(θ0,α0)−M θ

α(α̂−
α0)] + Op(max[n

−1, n−1α , n
−1
β ]). Note that replacing ∂M̂

θ(θ̄, ᾱ)/∂θr by M
θ
θθr, ∂M̂

θ(θ̄, ᾱ)/∂αs

by M θ
θαs, ∂M̂

θ
α(θ̄, ᾱ)/∂θr by M

θ
αθr and ∂M̂

θ
α(θ̄, ᾱ)/∂αs by M

θ
ααs introduces an error that is

Op(max[n
−3/2, n−3/2α , n

−3/2
β ]) by hypothesis (c). Hence,

θ̂ = θ0 − (M θ)−1[m̂θ(θ0,α0) +M
θ
α(α̂− α0)]

−(M θ)−1[(M̂ θ(θ0,α0)−Mθ)(θ̂ − θ0) + (M̂ θ
α(θ0,α0)−M θ

α)(α̂− α0)]
−(M θ)−1[

qθX
r=1

(θ̂r − θ0r)M θ
θθr(θ̂ − θ0) +

pαX
s=1

(α̂s − α0s)M θ
θαs(θ̂ − θ0)

+
qθX
r=1

(θ̂r − θ0r)M θ
αθr(α̂− α0) +

pαX
s=1

(α̂s − α0s)Mθ
ααs(α̂− α)]/2

+Op(max[n
−3/2, n−3/2α , n

−3/2
β ]).

Therefore, by recursive substitution, cf. Newey and Smith (2001, Lemma A4), the result is

obtained.
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Lemma A.2 Suppose α̂ = α0 + ψ̃
α/
√
nα + Q

α(ãϕ, ψ̃ϕ)/nα + Op(n
−3/2
α ), where ψ̃α and

Qα(ãϕ, ψ̃ϕ) are Op(1). Let P
β
W = (W ββ)−1−(W ββ)−1GββΣ

ββ
WG

β0
β (W

ββ)−1, ψ̃θW = −[Hβ0
W , P

β
W ]

0 Pn
k=1 g

β
k/
√

gβk = g
β
k (α0,β0),

M θW = −
 0 Gβ0β

Gββ W ββ

 , (M θW )−1 = −
 −ΣββW Hβ

W

Hβ0
W P βW

 ,M θW
α = −

 0

Gβα

 .
Then for λ̃ = −(Ŵ ββ)−1ĝβ(α̂, β̃), θ̂ = (β̃0, λ̃0)0, we have,

θ̂ = θ0 + ψ̃
θW/

√
n− (M θW )−1M θW

α ψ̃α/
√
nα +Op(max[n

−1, n−1α ]).

Proof. Let θ = (β0,λ0)0, λ0 = 0, mθ
k(θ,α) = −(λ0∂gβk (α,β)/∂β0, gβk (α, β)0+λ0[W ββ+ ξβ(z)])0

and m̂θ(θ,α) =
Pn
k=1m

θ
k(θ,α)/n. The first-order conditions for β̃, the definition of λ̃ imply

0 = m̂θ(θ̂, α̂) + [0,−λ̃0(Op(n−1))]0.

Hence, it follows from Lemma A.1 that θ̂ = θ0 +Op(max[n
−1/2, n−1/2α ]). Therefore,

m̂θ(θ̂, α̂) = Op(n
−1max[n−1/2, n−1/2α ]).

A further application of Lemma A.1 gives the result.

Lemma A.3 Suppose that α̂ = α0+ ψ̃
α/
√
nα+Q

α(ãϕ, ψ̃ϕ)/nα+Op(n
−3/2
α ), where ψ̃α and

Qα(ãϕ, ψ̃ϕ) are Op(1). Let Ω
ββ
k = gβkg

β0
k − Ωββ, Ω̃ββ =

Pn
k=1Ω

ββ
k /
√
n, Ω̄βr = E[∂[g

β
kg

β0
k ]/∂βr]

and Ω̄αs = E[∂[g
β
kg

β0
k ]/∂αs]. Then

Ω̂ββ(α̂, β̃) = Ωββ + Ω̃ββ/
√
n+

pβX
r=1

Ω̄βre
0
r(ψ̃

θW/
√
n− (M θW )−1M θW

α ψ̃α/
√
nα)

+
pαX
s=1

Ω̄αse
0
sψ̃

α/
√
nα +Op(max[n

−1, n−1α ]).

Proof. Similarly to the proof of Lemma A.4, expanding gives

Ω̂ββ(α̂, β̃) = Ω̂(α0, β0) +
pβX
r=1

Ω̄βr(β̃r − β0r) +
pαX
s=1

Ω̄αs(α̂s − α0s) +Op(max[n−1, n−1α ]).

By Lemma A.1, β̃r− β0r = e0r(ψ̃θW/
√
n− (M θW )−1M θW

α ψ̃α/
√
nα)+Op(max[n

−1, n−1α ]). The

conclusion follows by substitution into the above equation.
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Let Ω̂ββ =
Pnβ
i=1 g

β
i g

β0
i /nβ, Ĝ

β
β =

Pnβ
i=1G

β
βi/nβ, Ĝ

β
α =

Pnβ
i=1G

β
αi/nβ, G

βr
ββi = ∂

2gβi /∂βr∂β
0,

Gβsβαi = ∂
2gβi /∂αs∂β

0, gβrβi = ∂g
β
i /∂βr and g

βs
αi = ∂g

β
i /∂αs.

We detail an expansion for GMM in the general case. Let θ = (β0,λ0)0, θ0 = (β00, 0
0)0, β̂

be the two-step GMM estimator and

m̂θ(θ,α) = −
 Ĝββ(α, β)

0λ

ĝβ(α,β) + (Ωββ + ξ̃Ω
ββ
)λ

 ,
where ξ̃Ω

ββ
= Ω̃ββ/

√
n+

Ppβ
r=1 Ω̄βre

0
r(ψ̃

θW/
√
n−(M θW )−1M θW

α ψ̃α/
√
nα)+

Ppα
s=1 Ω̄αse

0
sψ̃

α/
√
nα.

Also, let λ̂ = −Ω̂ββ(α̂, β̃)−1ĝβ(α̂, β̂). Then λ̂ = Op(max[n−1/2α , n−1/2β ]). The first-order condi-

tions for GMM and Lemmas A.1-A.3 imply

0 = m̂θ(θ̂, α̂)+[0,−λ̂0(Op(max[n−1, n−1α ]))]0 = m̂θ(θ̂, α̂)+Op(max[n
−1/2
α , n

−1/2
β ]max[n−1, n−1α ]).

Therefore, we can solve for θ̂2S − θ0 as in the conclusion of Lemma A.1 using the definitions
m̂θ(θ0,α0) = −(00, ĝβ(α0,β0)0)0,

M θ = −
 0 Gβ0β

Gββ Ωββ

 , (Mθ)−1 = −
 −Σββ Hβ

Hβ0 P β

 ,M θ
α = −

 0

Gβα

 ,

Ãθ = −n1/2β

 0 (Ĝββ −Gββ)0

(Ĝββ −Gββ) ξ̃Ω
ββ

 , Ãθα = −n1/2β
 0

(Ĝβα −Gβα)

 ,

M θ
θθr = −

 0 E[Gβrββi]
0

E[Gβrββi] 0

 , (r ≤ pβ),M θ
θθ,pβ+r

= −
 E[∂2gβir/∂β∂β

0] 0

0 0

 , (r ≤ mβ).

M θ
θαs = −

 0 E[Gβsβαi]
0

E[Gβsβαi] 0

 , (s ≤ pα),

Mθ
αθr = −

 0

E[∂2gβi /∂βr∂α
0]

 , (r ≤ pβ),Mβ
αθ,pβ+r

= −
 E[∂2gβir/∂β∂α

0]

0

 , (r ≤ mβ).

M θ
ααs = −

 0

E[∂2gβi /∂αs∂α
0]

 , (s ≤ pα). (A.1)
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For a general expansion for GEL, we apply Lemma A.1. Let θ = (β 0,λ0)0, θ0 = (β 00, 0
0)0,

θ̂ be the GEL estimator and

m̂θ(θ,α) =
n∗X
i=1

ρθv(λ
0gβi (α,β))

 Gββi(α, β)
0λ

gβi (β)

 /n∗.
Therefore, using similar arguments to those in Newey and Smith (2002) we can solve for

θ̂GEL − θ0 as in the conclusion of Lemma A.1 by setting nβ = n∗, dropping n and with the
definitions m̂θ(θ0,α0) = −(00, ĝβ(α0,β0)0)0,

M θ = −
 0 Gβ0β

Gββ Ωββ

 , (M θ)−1 = −
 −Σββ Hβ

Hβ0 P β

 ,M θ
α = −

 0

Gβα



Ãθ = −n1/2∗

 0 (Ĝββ −Gββ)0

(Ĝββ −Gββ) Ω̂ββ − Ωββ

 , Aθα(zi) = −n1/2∗
 0

(Ĝβα −Gβα)



M θ
θθr = −

 0 E[Gβrββi]
0

E[Gβrββi] E[g
βr
βi g

β0
i + g

β
i g

βr0
βi ]

 , (r ≤ pβ),

M θ
θθ,pβ+r

= −
 E[∂2gβir/∂β∂β

0] E[Gβ0βierg
β0
i + g

β
irG

β0
βi]

E[gβi e
0
rG

β
βi + g

β
irG

β
βi] −ρθvvv(0)E[gβirgβi gβ0i ]

 , (r ≤ mβ).

M θ
θαs = −

 0 E[Gβsβαi]
0

E[Gβsβαi] E[G
β
αiesg

β0
i + g

β
i e
0
sG

β0
αi]

 , (s ≤ pα),

M θ
αθr = −

 0

E[∂2gβi (β0,α0)/∂βr∂α
0]

 , (r ≤ pβ),

Mβ
αθ,pβ+r

= −
 E[∂2gβir/∂β∂α

0]

E[gβi ∂g
β
ir/∂α

0] + E[gβirG
β
αi]

 , (r ≤ mβ).

M θ
ααs = −

 0

E[∂2gβi /∂αs∂α
0]

 , (s ≤ pα). (A.2)
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Proof of Theorem 3.1: The matrices M θ, M θ−1 are as defined in (A.1). Thus, ψ̃θ =

−n1/2β [Hβ0, P β]0ĝβ. For independent samples, ξ̃Ω
ββ
is uncorrelated with ĝβ as is Ãθα with ψ̃

α.

Thus,

Bias(θ̂2S) = θ0 − (M θ)−1Mθ
αBias(α̂)

−(M θ)−1E[Ãθ(ψ̃θ/
√
nβ − (Mθ)−1Mθ

αψ̃
α/
√
nα)]/

√
nβ

−(M θ)−1
qθX
r=1

e0r[E[ψ̃
θM θ

θθrψ̃
θ]/nβ + (M

θ)−1Mθ
αE[ψ̃

αM θ
θθr(M

θ)−1M θ
αψ̃

α]/nα]/2

+(Mθ)−1
pαX
s=1

e0sE[ψ̃
αM θ

θαs(M
θ)−1M θ

αψ̃
α]/2nα

+(Mθ)−1[
qθX
r=1

e0r(M
θ)−1Mθ

αE[ψ̃
αM θ

αθrψ̃
α]/2nα

−(M θ)−1[
pαX
s=1

e0sψ̃
αM θ

ααsψ̃
α/nα]/2 +Op(max[n

−3/2, n−3/2α , n
−3/2
β ]).

Note that the penultimate two terms are identical. Now,

E[Ãθψ̃θ] =

 E[Gβ0βiP
βgβi ]

E[GββiH
βgβi ]

 ,

E[Ãθ(M θ)−1M θ
αψ̃

α] =

 0

−Ppβ
r=1 Ω̄βrP

βGβαΣ
ααGβ0αH

β0
Wer +

Ppα
s=1 Ω̄αsP

βGβαΣ
ααes

 .
Let (Mθ

β)
−1 = (−Σββ, Hβ). By a similar analysis to that in Newey and Smith (2002, Proof

of Theorem 4.1),

(M θ
β)
−1

pβX
r=1

e0rE[ψ̃
θM θ

θθrψ̃
θ] = −Hβaβ.

(M θ
β)
−1

qθX
r=pβ+1

e0rE[ψ̃
θM θ

θθrψ̃
θ] = 0.

(Mθ
β)
−1

pβX
r=1

e0r(M
θ)−1M θ

αE[ψ̃
αM θ

θθr(M
θ)−1Mθ

αψ̃
α] = Σββcβββ −Hβaβββ.

(Mθ
β)
−1

mβX
r=pβ+1

e0r(M
θ)−1M θ

αE[ψ̃
αM θ

θθr(M
θ)−1Mθ

αψ̃
α] = Σββcβββ.

−(Mθ
β)
−1

pαX
s=1

e0sE[ψ̃
αM θ

θαs(M
θ)−1Mθ

αψ̃
α] = Σββcββα −Hβaββα.

(M θ
β)
−1

pαX
s=1

e0sψ̃
αM θ

ααsψ̃
α = −Hβaβαα.

[29]



Therefore, as

Ω̄βr = E[G
β
βierg

β.α
i + gβ.αi e0rG

β0
βi], Ω̄αs = E[G

β
αiesg

β.α
i + gβ.αi e0sG

β0
αi],

and Bias(β̂2S) = (Ipβ , 0)Bias(θ̂2S), after simplification and collecting terms the result of the

theorem is obtained.

Proof of Theorem 3.2: From (A.2), because of independent sampling Ãθ and Ãθα are

uncorrelated with ψ̃α. Hence,

θ̂GEL = −(Mθ)−1Mθ
αBias(α̂)

−(Mθ)−1E[Ãθψ̃θ]/N

−(Mθ)−1
qθX
r=1

e0r[E[ψ̃
θM θ

θθrψ̃
θ] + (Mθ)−1Mθ

αE[ψ̃
αM θ

θθr(M
θ)−1M θ

αψ̃
α]]/2N

+(M θ)−1
pαX
s=1

e0sE[ψ̃
αMθ

θαs(M
θ)−1M θ

αψ̃
α]/2nα

+(M θ)−1
qθX
r=1

e0r(M
θ)−1M θ

αE[ψ̃
αM θ

αθrψ̃
α]/2nα

−(Mθ)−1
pαX
s=1

e0sE[ψ̃
αM θ

ααsψ̃
α]/2nα +Op(max[n

−3/2, n−3/2α , n
−3/2
β ]).

Note that the penultimate two terms are identical. Also, Biasα0(θ̂GEL) = −(M θ)−1(E[Ãθψ̃θ]+Pqθ
r=1 e

0
r[E[ψ̃

θM θ
θθrψ̃

θ]/2)/N ; see Newey and Smith (2002, Proof of Theorem 4.2). Let (M θ
β)
−1 =

(−Σββ, Hβ). By a similar analysis to that in Newey and Smith (2002, Proof of Theorem

4.2),

(M θ
β)
−1

pβX
r=1

e0r(M
θ)−1M θ

αE[ψ̃
αM θ

θθr(M
θ)−1M θ

αψ̃
α] = Σββcβββ −Hβaβββ

−Hβ(E[GββiH
βGβαΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β0
βiP

βGβαΣ
ααGβ0αH

β)].

(M θ
β)
−1

qθX
r=pβ+1

e0r(M
θ)−1M θ

αE[ψ̃
αM θ

θθr(M
θ)−1M θ

αψ̃
α] = Σββcβββ+2Σ

ββE[Gβ0βiP
βGβαΣ

ααGβ0α P
βgβi ]

−Hβ(E[GββiH
βGβαΣ

ααGβ0α P
βgβi ] + E[g

β
i tr(G

β0
βiP

βGβαΣ
ααGβ0αH

β)])

+ρθvvv(0)H
βE[gβi g

β0
i P

βGβαΣ
ααGβαP

βgβi ].

(M θ
β)
−1

pαX
s=1

e0sE[ψ̃
αMθ

θαs(M
θ)−1M θ

αψ̃
α] = Σββcββα −Hβaββα

−Hβ(E[GβαiΣ
ααGβ0α P

βgβi ] + E[g
β
i tr(G

β0
αiP

βGβαΣ
αα)]).
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(Mθ
β)
−1

pαX
s=1

e0sE[ψ̃
αM θ

ααsψ̃
α] = −Hβaβαα.

Therefore, simpifying and collecting terms gives the result of the theorem.

Proof of Corollary 3.2: Immediate asGβα = 0, E[∂
2gβir/∂β∂α

0] = 0 andE[∂2gβkr/∂β∂α
0] =

0.

Proof of Corollary 3.3: Follows immediately as in Proof of Corollary 3.2 and from

Newey and Smith (2002, Theorem 4.2).

Proof of Theorem 3.3: From (A.1), as Bias(β̂2S) = (Ipβ , 0)Bias(θ̂2S),

Bias(β̂2S) = −HβGβαBias(α̂)

−ΣββE[Gβ0βiP βgβ.αi ]/nβ +H
βE[GββiH

βgβ.αi ]/nβ

+HβE[gβi g
β0
i P

βgβ.αi ]/nβ

−Hβ(
pβX
r=1

Ω̄βrP
βE[gβ.αi gβ.α0i ]Hβ0

W er +
pαX
s=1

Ω̄αsP
βE[gβ.αi gα0i ]H

α0es)/nβ

+HβE[GβαiH
αgαi ]/nβ

+
pβX
r=1

(ΣββE[Gβrββi]
0P β −HβE[Gβrββi]H

β)E[gβ.αi gβ.α0i ]Hβ0er/2nβ

+
mβX
r=1

ΣββE[∂2gβir/∂β∂β
0]HβE[gβ.αi gβ.α0i ]P βer/2nβ

+
pαX
s=1

(ΣββE[Gβsβαi]
0P β −HβE[Gβsβαi]H

β)E[gβ.αi gαi ]H
α0es/2nβ

−
pβX
r=1

HβE[∂2gβi /∂βr∂α
0]HαE[gαi g

β.α0
i ]Hβ0er/2nβ

+
mβX
r=1

ΣββE[∂2gβir/∂β∂α
0]HαE[gαi g

β.α0
i ]P βer/2nβ

−
pαX
s=1

HβE[∂2gβi /∂αs∂α
0]Σααes/2nβ.

As

Ω̄βr = E[G
β
βierg

β0
i + g

β
i e
0
rG

β0
βi], Ω̄αs = E[G

β
αiesg

β0
i + g

β
i e
0
sG

β0
αi],

simplifying and collecting terms yields the result in Theorem 3.3.

Proof of Theorem 3.4: From (A.2), as Bias(β̂GEL) = (Ipβ , 0)Bias(θ̂GEL),

Bias(β̂GEL) = −HβGβαBias(α̂)
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−ΣββE[Gβ0βiP βgβ.αi ]/nβ +H
β(E[GββiH

βgβ.αi ] + E[gβi g
β0
i P

βgβ.αi ])/nβ

+HβE[GβαiH
αgαi ]/nβ

−
pβX
r=1

(−ΣββE[Gβrββi]0P β

+Hβ(E[Gβrββi]H
β + E[gβri g

β0
i + g

β
i g

βr0
i ]P

β))E[gβ.αi gβ.α0i ]Hβ0er/2nβ

+
mβX
r=1

Σββ(E[∂2gβir(α0)/∂β∂β
0]Hβ + E[Gβ0βierg

β0
i + g

β
irG

β0
βi]P

β)E[gβ.αi gβ.αi ]P βer/2nβ

−
mβX
r=1

Hβ(E[gβi e
0
rG

β
βi + g

β
irG

β
βi]H

β

−ρθvvv(0)E[gβirgβi gβ0i ]P β)E[gβ.αi gβ.αi ]P βer/2nβ

−
pαX
s=1

[−ΣββE[Gβsβαi]0P β

+Hβ(E[Gβsβαi]H
β + E[gβsαig

β0
i + g

β
i g

βs0
αi ]P

β)]E[gβ.αi gα0i ]H
α0es/nβ

−Hβ
pαX
s=1

E[∂2gβi /∂αs∂α
0]Σααes/2nβ.

Simplifying and collecting terms gives the result in Theorem 3.4.

Appendix B: Some Notation

We use the generic notation er and es to indicate unit vectors of dimension indicated by

context.

B.1 System-α

gαj (α) ≡ gα(xj ,α), (j = 1, ..., nβ), ĝ
α(α) ≡

nαX
j=1

gαj (α)/nα,

Ω̂αα(α) ≡
nαX
j=1

gαj (α)g
α
j (α)

0/nα.

B.2 System-β

gβi (α, β) ≡ gβ(zi,α, β), (i = 1, ..., nβ), ĝ
β(α, β) ≡

nβX
i=1

gβi (α,β)/nβ,

gβk (α, β) ≡ gβ(zk,α, β), (k = 1, ..., n), Ω̂
ββ(α,β) ≡

nX
k=1

gβk (α, β)g
β
k (α,β)

0/n.

[32]



B.3 Asymptotic Bias System-α

gαj = gαj (α0), G
α
j (α) = ∂g

α
j (α)/∂α

0,

Gαj = Gαj (α0), (j = 1, ..., nα),

Gα = E[Gαj ], Ω
αα = E[gαj g

α0
j ], Σ

αα = (Gα0(Ωαα)−1Gα)−1,

Hα = ΣααGα0(Ωαα)−1, P α = (Ωαα)−1 − (Ωαα)−1GαΣααGα0(Ωαα)−1.

aαs ≡ tr(ΣααE[∂2gαjs/∂α∂α0])/2, (s = 1, ...,mα). (B.1)

B.4 Asymptotic Bias System-β

gβi = gβi (α0, β0), G
β
βi(α,β) = ∂g

β
i (α, β)/∂β

0,

Gββi = Gββi(α0,β0), (i = 1, ..., nβ),

Ωββ = E[gβi g
β0
i ], G

β
β = E[G

β
βi], Σ

ββ = (Gβ0β (Ω
ββ)−1Gββ)

−1,

Hβ = ΣβGβ0β (Ω
ββ)−1, P β = (Ωββ)−1 − (Ωββ)−1GββΣββGβ0β (Ωββ)−1.

aβr ≡ tr(ΣββE[∂2gβir/∂β∂β 0])/2, (r = 1, ...,mβ). (B.2)

Gβαi(α, β) = ∂gβi (α, β)/∂α
0, Gβαi = G

β
αi(α0,β0), G

β
α = E[G

β
αi]

ΣββW = (Gβ0β (W
ββ)−1Gββ)

−1, Hβ
W = ΣββWG

β0
β (W

ββ)−1.

B.5 Independent Samples

aβββr = tr(HβGβαΣ
ααGβ0αH

β0E[∂2gβir/∂β∂β
0])/2, aββαr = −tr(HβGβαΣ

ααE[∂2gβir/∂α∂β
0]),

aβααr = tr(ΣααE[∂2gβir/∂α∂α
0])/2, (r = 1, ...,mβ).

cβββr = tr(E[∂2gβ0i /∂β∂βr]P
βGβαΣ

ααGβ0αH
β0),

cββαr = −tr(E[∂2gβ0i /∂α∂βr]P βGβαΣαα), (r = 1, ..., pβ).

[33]



B.6 Identical Samples

gβ.αi = gβi −GβαHαgαi , (i = 1, ..., nβ),

Ωββ.αα = E[gβ.αi gβ.α0i ],Ωββ.α = E[gβi g
β.α0
i ],Ωαβ.α = E[gαi g

β.α0
i ]

aβββr = tr(HβΩββ.ααHβ0E[∂2gβir/∂β∂β
0])/2, aββαr = tr(H

αΩαβ.αHβ0E[∂2gβir/∂β∂α
0]),

aβααr = tr(ΣααE[∂2gβir/∂α∂α
0])/2, (r = 1, ...,mβ),

cβββr = tr(HβΩββ.ααP βE[∂2gβi /∂β
0∂βr]),

cββαr = tr(HαΩαβ.αP βE[∂2gβi /∂α
0∂βr]), (r = 1, ..., pβ).
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Table 1: Covariance Structure Models: nβ = 100

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
2S-GMM -.111 -.116 0.789 0.998 .065 .129 .116
CUE -.125 -.128 0.765 0.990 .069 .143 .128
ET -.094 -.098 0.805 1.021 .067 .115 .099
EL -.065 -.069 0.835 1.057 .067 .094 .073

t10
2S-GMM -.059 -.060 0.856 1.026 .053 .079 .062
CUE -.066 -.067 0.845 1.022 .055 .086 .068
ET -.046 -.048 0.866 1.042 .054 .071 .053
EL -.028 -.030 0.886 1.063 .055 .062 .043

Normal
2S-GMM -.036 -.034 0.889 1.041 .047 .059 .041
CUE -.040 -.038 0.881 1.039 .049 .063 .044
ET -.026 -.025 0.896 1.051 .048 .055 .038
EL -.015 -.012 0.905 1.063 .048 .050 .035

Uniform
2S-GMM -.007 -.008 0.946 1.043 .029 .030 .021
CUE -.008 -.009 0.945 1.042 .030 .031 .021
ET -.005 -.007 0.948 1.045 .030 .030 .020
EL -.003 -.004 0.950 1.048 .030 .030 .020

Lognormal
2S-GMM -.415 -.430 0.434 0.777 .111 .429 .430
CUE -.481 -.490 0.332 0.727 .125 .497 .490
ET -.396 -.408 0.429 0.807 .120 .414 .408
EL -.303 -.317 0.513 0.927 .131 .331 .317

Exponential
2S-GMM -.141 -.146 0.722 1.004 .087 .166 .147
CUE -.162 -.166 0.680 0.996 .097 .189 .166
ET -.108 -.110 0.751 1.043 .088 .140 .113
EL -.058 -.061 0.803 1.097 .087 .105 .076

Bimodal
2S-GMM -.009 -.009 0.945 1.036 .028 .029 .020
CUE -.010 -.010 0.944 1.035 .028 .030 .021
ET -.006 -.005 0.948 1.040 .028 .029 .020
EL -.002 -.001 0.951 1.044 .028 .028 .019

[T.1]



Table 2: Covariance Structure Models: nβ = 500

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
2S-GMM -.041 -.042 0.904 1.013 .034 .053 .042
CUE -.042 -.043 0.903 1.012 .034 .054 .043
ET -.029 -.029 0.917 1.024 .033 .044 .031
EL -.016 -.016 0.929 1.039 .034 .038 .026

t10
2S-GMM -.016 -.016 0.945 1.024 .025 .029 .021
CUE -.016 -.016 0.945 1.024 .025 .030 .021
ET -.010 -.010 0.952 1.030 .024 .026 .018
EL -.004 -.005 0.957 1.036 .025 .025 .017

Normal
2S-GMM -.008 -.008 0.959 1.027 .021 .022 .015
CUE -.008 -.008 0.959 1.027 .021 .022 .015
ET -.005 -.005 0.962 1.030 .020 .021 .014
EL -.001 -.001 0.965 1.034 .021 .021 .014

Uniform
2S-GMM -.002 -.002 0.976 1.019 .013 .013 .009
CUE -.002 -.002 0.976 1.019 .013 .013 .009
ET -.001 -.001 0.977 1.019 .013 .013 .009
EL -.001 -.001 0.977 1.019 .013 .013 .009

Lognormal
2S-GMM -.225 -.227 0.652 0.917 .082 .239 .227
CUE -.231 -.233 0.634 0.912 .085 .246 .233
ET -.178 -.182 0.705 0.965 .079 .194 .182
EL -.118 -.124 0.757 1.034 .081 .143 .125

Exponential
2S-GMM -.041 -.042 0.894 1.029 .040 .057 .044
CUE -.042 -.043 0.892 1.028 .040 .058 .045
ET -.024 -.025 0.914 1.043 .039 .046 .032
EL -.006 -.007 0.929 1.059 .039 .040 .029

Bimodal
2S-GMM -.002 -.001 0.977 1.018 .012 .013 .009
CUE -.002 -.001 0.976 1.018 .012 .013 .009
ET -.001 -.000 0.978 1.019 .012 .012 .008
EL -.000 .001 0.979 1.020 .012 .012 .008
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Table 3: Covariance Structure Models: Bias-Corrected and Bootstrap GMM Estimators:
nβ = 100

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
2S-GMM -.111 -.116 0.789 0.998 .065 .129 .116
NP -.073 -.079 0.808 1.061 .076 .105 .084
RNP -.049 -.056 0.834 1.084 .077 .091 .068
FSGEL -.044 -.050 0.845 1.089 .075 .086 .065
BCa -.060 -.066 0.828 1.065 .072 .094 .072
BCb -.049 -.054 0.841 1.081 .073 .088 .067
BCc -.067 -.073 0.817 1.065 .076 .101 .079
BCd -.016 -.021 0.884 1.093 .065 .067 .047

t10
2S-GMM -.059 -.060 0.856 1.026 .053 .079 .062
NP -.026 -.028 0.881 1.072 .060 .065 .046
RNP -.017 -.020 0.890 1.079 .059 .061 .044
FSGEL -.011 -.013 0.899 1.084 .058 .059 .040
BCa -.018 -.020 0.891 1.076 .057 .060 .043
BCb -.015 -.017 0.895 1.079 .057 .059 .043
BCc -.022 -.024 0.882 1.077 .061 .065 .045
BCd -.002 -.003 0.914 1.083 .053 .053 .036

Normal
2S-GMM -.036 -.034 0.889 1.041 .047 .059 .041
NP -.008 -.007 0.911 1.074 .050 .051 .036
RNP -.005 -.004 0.916 1.076 .050 .050 .035
FSGEL -.001 .000 0.920 1.078 .049 .049 .033
BCa -.004 -.004 0.918 1.076 .049 .049 .034
BCb -.003 -.002 0.918 1.076 .049 .049 .034
BCc -.007 -.007 0.910 1.079 .053 .053 .038
BCd .002 .003 0.926 1.078 .047 .047 .033

Uniform
2S-GMM -.007 -.008 0.946 1.043 .029 .030 .021
NP .006 .004 0.958 1.055 .030 .030 .020
RNP .005 .004 0.959 1.055 .030 .030 .020
FSGEL .007 .006 0.961 1.057 .030 .030 .020
BCa .005 .004 0.958 1.055 .030 .030 .020
BCb .005 .004 0.958 1.055 .029 .030 .020
BCc .005 .003 0.954 1.058 .032 .032 .022
BCd .006 .005 0.959 1.055 .029 .030 .020

Lognormal
2S-GMM -.415 -.430 0.434 0.777 .111 .429 .430
NP -.380 -.403 0.429 0.887 .145 .407 .403
RNP -.230 -.282 0.511 1.128 .453 .508 .289
FSGEL -.264 -.290 0.531 1.024 .158 .308 .292
BCa -.352 -.371 0.465 0.889 .135 .377 .371
BCb -.278 -.302 0.524 0.991 .152 .317 .303
BCc -.369 -.393 0.449 0.874 .137 .394 .393
BCd -.096 -.111 0.753 1.096 .111 .147 .121

Exponential
2S-GMM -.141 -.146 0.722 1.004 .087 .166 .147
NP -.089 -.095 0.744 1.096 .108 .140 .107
RNP -.060 -.066 0.771 1.125 .105 .122 .085
FSGEL -.042 -.048 0.799 1.136 .102 .110 .077
BCa -.080 -.086 0.764 1.092 .099 .128 .097
BCb -.059 -.065 0.788 1.115 .098 .114 .082
BCc -.089 -.096 0.746 1.092 .104 .137 .106
BCd -.026 -.031 0.838 1.119 .087 .091 .060

Bimodal
2S-GMM -.009 -.009 0.945 1.036 .028 .029 .020
NP .006 .006 0.958 1.051 .029 .029 .021
RNP .006 .006 0.959 1.052 .028 .029 .020
FSGEL .008 .008 0.963 1.053 .028 .029 .020
BCa .007 .007 0.960 1.052 .028 .029 .021
BCb .007 .006 0.960 1.052 .028 .029 .021
BCc .006 .006 0.955 1.055 .031 .031 .022
BCd .008 .008 0.962 1.052 .028 .029 .020
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Table 4: Covariance Structure Models: Bias-Corrected and Bootstrap GMM Estimators:
nβ = 500

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
2S-GMM -.041 -.042 0.904 1.013 .034 .053 .042
NP -.020 -.020 0.921 1.042 .038 .042 .029
RNP -.014 -.015 0.927 1.050 .039 .041 .028
FSGEL -.014 -.015 0.927 1.048 .037 .040 .028
BCa -.017 -.018 0.924 1.043 .037 .041 .028
BCb -.015 -.016 0.926 1.045 .037 .040 .028
BCc -.018 -.019 0.923 1.043 .037 .041 .029
BCd -.004 -.004 0.942 1.050 .034 .034 .023

t10
2S-GMM -.016 -.016 0.945 1.024 .025 .029 .021
NP -.003 -.003 0.955 1.039 .026 .026 .018
RNP -.002 -.002 0.957 1.040 .026 .026 .018
FSGEL -.002 -.001 0.958 1.040 .026 .026 .018
BCa -.002 -.002 0.957 1.039 .026 .026 .018
BCb -.002 -.002 0.958 1.039 .026 .026 .018
BCc -.002 -.003 0.956 1.040 .026 .026 .018
BCd .000 .000 0.961 1.040 .025 .025 .017

Normal
2S-GMM -.008 -.008 0.959 1.027 .021 .022 .015
NP .000 .001 0.966 1.035 .021 .021 .014
RNP .001 .001 0.966 1.035 .021 .021 .014
FSGEL .001 .001 0.966 1.036 .021 .021 .014
BCa .001 .001 0.967 1.036 .021 .021 .013
BCb .001 .001 0.967 1.036 .021 .021 .013
BCc .001 .000 0.967 1.036 .021 .021 .014
BCd .001 .001 0.968 1.036 .021 .021 .013

Uniform
2S-GMM -.002 -.002 0.976 1.019 .013 .013 .009
NP .001 .001 0.979 1.022 .013 .013 .009
RNP .001 .001 0.979 1.021 .013 .013 .009
FSGEL .001 .001 0.980 1.022 .013 .013 .009
BCa .001 .001 0.979 1.021 .013 .013 .008
BCb .001 .001 0.979 1.021 .013 .013 .008
BCc .001 .001 0.979 1.022 .013 .013 .009
BCd .001 .001 0.979 1.022 .013 .013 .008

Lognormal
2S-GMM -.225 -.227 0.652 0.917 .082 .239 .227
NP -.161 -.166 0.674 1.027 .108 .194 .168
RNP -.107 -.118 0.724 1.109 .123 .163 .129
FSGEL -.121 -.128 0.720 1.068 .106 .161 .131
BCa -.161 -.166 0.691 1.007 .097 .188 .166
BCb -.132 -.138 0.724 1.038 .097 .164 .139
BCc -.164 -.169 0.687 1.005 .098 .191 .170
BCd -.044 -.046 0.833 1.098 .082 .093 .067

Exponential
2S-GMM -.041 -.042 0.894 1.029 .040 .057 .044
NP -.012 -.013 0.914 1.065 .044 .046 .032
RNP -.009 -.011 0.919 1.066 .044 .045 .031
FSGEL -.007 -.009 0.923 1.069 .043 .044 .030
BCa -.011 -.013 0.917 1.062 .043 .044 .030
BCb -.009 -.011 0.921 1.064 .043 .044 .030
BCc -.012 -.013 0.916 1.062 .043 .045 .031
BCd -.003 -.004 0.932 1.067 .040 .040 .027

Bimodal
2S-GMM -.002 -.001 0.977 1.018 .012 .013 .009
NP .002 .002 0.980 1.021 .013 .013 .008
RNP .002 .002 0.980 1.021 .013 .013 .008
FSGEL .002 .002 0.981 1.022 .012 .013 .008
BCa .002 .003 0.980 1.022 .012 .013 .008
BCb .002 .003 0.980 1.022 .012 .013 .008
BCc .002 .003 0.980 1.022 .013 .013 .009
BCd .002 .003 0.981 1.022 .012 .013 .009
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