84 research outputs found

    Harvennuksen ja lannoituksen vaikutus kuusen puuaineen ja kuitujen ominaisuuksiin : tuloksia pitkään seuratuilta kenttäkokeilta

    Get PDF
    The aim of this thesis was to study the basic relationships between thinning and fertilisation, tree growth rate and wood properties of Norway spruce (Picea abies (L.) Karst.) throughout a stand rotation. The material consisted of a total of 109 trees from both long-term thinning (Heinola, 61°10'N, 26°01'E; Punkaharju, 61°49'N, 29°19'E) and fertilisation-thinning experiments (Parikkala, 61°36'N, 29°22'E; Suonenjoki, 62°45'N, 27°00'E) in Finland. Wood properties, i.e., radial increment, wood density, latewood proportion, tracheid length, cell wall thickness and lumen diameter, as well as relative lignin content, were measured in detail from the pith to the bark, as well as from the stem base towards the stem apex. Intensive thinning and fertilisation treatments of Norway spruce stands increased (8% 64%) the radial increment of studied trees at breast height (1.3 m). At the same time, a faster growth rate slightly decreased average wood density (2% 7%), tracheid length (0% 9%) and cell wall thickness (1% 17%). The faster growth resulted in only small changes (0% 9%) in lumen diameter and relative lignin content (1% 2%; lignin content was 25.4% 26%). However, the random variation in wood properties was large both between and within trees and annual rings. The results of this thesis indicate that the prevailing thinning and fertilisation treatments of Norway spruce stands in Fennoscandia may significantly enhance the radial increment of individual trees, and cause only small or no detrimental changes in wood and tracheid properties.Puuaineen ja kuitujen ominaisuuksilla on suuri merkitys puun käyttömahdollisuuksiin raaka-aineena ja puutuotteiden laatuun. Puuaineen ominaisuuksiin vaikuttavat sekä perintö- että ympäristötekijät. Ympäristötekijöistä tärkeimpiä ovat kasvupaikka sekä puiden välinen kilpailu ravinteista, vedestä ja valosta, jotka säätelevät puiden kasvunopeutta. Metsänhoidolla, kuten erilaisilla harvennuksilla ja lannoituksilla, voidaan vaikuttaa puiden kasvunopeuteen ja siten muodostuvan puuaineen ominaisuuksiin. Tässä tutkimuksessa selvitettiin harvennuksen ja lannoituksen vaikutuksia kuusen (Picea abies (L.) Karst.) puuaineen ominaisuuksiin, kuten tiheyteen, kuidunpituuteen, kuituseinän paksuuteen, soluontelon läpimittaan ja ligniinipitoisuuteen. Puuaineen ominaisuuksia tutkittiin puun tyveltä latvaan sekä ytimestä pintaan. Aineisto (109 puuta) kerättiin Metsäntutkimuslaitoksen ylläpitämistä, pitkään seuratuista harvennuskokeista Heinolassa ja Punkaharjulla sekä harvennus-lannoituskokeista Parikkalassa ja Suonenjoella. Heinolassa ja Punkaharjulla käsittelyt olivat harventamaton, lievästi tai voimakkaasti harvennettu. Parikkalassa ja Suonenjoella lannoituskäsittelyt olivat lannoittamaton, 150 kg typpeä (N)/ha joka viides vuosi tai 300 kg N/ha joka viides vuosi ja harvennuskäsittelyt viivästetty ensiharvennus, normaali ensiharvennus sekä voimakas ensiharvennus. Lievä ja voimakas harvennus lisäsivät koepuiden läpimitan kasvua 24 64 % harventamattomaan koealaan verrattuna. Puuaineen tiheys pieneni muutaman prosentin molemmissa käsittelyissä. Voimakkaasti harvennetun koealan puissa kuidut olivat 4 9 % lyhyempiä kuin harventamattoman koealan. Kuituseinän paksuudessa ja kuidun läpimitassa oli vain pieniä eroja eri harvennusvoimakkuuksien välillä. Harvennus-lannoituskokeissa lannoitus lisäsi koepuiden kasvua noin 40 % verrattuna lannoittamattomaan koealaan. Normaali ensiharvennus lisäsi koepuiden kasvua 8 % ja voimakas ensiharvennus 29 % verrattuna viivästettyyn ensiharvennukseen. Lannoitus laski puuaineen tiheyttä noin 7 % verrattuna lannoittamattomiin koepuihin. Erot puuaineen tiheydessä eri harvennuskäsittelyiden välillä olivat pieniä. Harvennus- ja lannoituskäsittelyiden vaikutukset kuitujen kokoon ja ligniinipitoisuuteen olivat vähäisiä. Tulokset osoittavat, että nykyisten harvennus- ja lannoituskäsittelyiden vaikutukset puuaineen tiheyteen, kuidunpituuteen, kuituseinän paksuuteen, soluontelon läpimittaan ja ligniinipitoisuuteen ovat vähäisiä. Puuaineen ja kuitujen ominaisuudet vaihtelevat kuitenkin suuresti puiden ja kasvukausien välillä

    Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review

    Get PDF
    Utilization of hierarchically aligned natural cellulosic structures has become a leading natural template scaffold for a diverse range of functional applications. This natural scaffold derived from wood by partial or full removal of lignin without altering or disturbing the hierarchically aligned cellulosic structure is known as delignified wood (DW). Over the past five years, various types of functional materials for diverse applications have been fabricated using DW. This review aims to highlight the significance of DW in functional material development by discussing the delignification impacts on the wood cell wall properties and review the different strategies used in functional materials fabrication. The first part of this review discusses the fundamental aspects of wood cell wall structure in relation to wood chemistry and lignin biosynthesis. The second part focuses on the different delignification methods used in partial and full lignin removal from wood cell walls and the fundamental properties (i.e., physical, mechanical, and chemical) of DW. The third part of this review discusses the strategies and the detailed current literature regarding the development of diverse functional materials based on DW. A greater understanding of DW provides the potential for further development of DW‐based functional materials for a diverse range of future applications

    Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst)

    Get PDF
    Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre-dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.Peer reviewe

    Localization of (+)-Catechin in Picea abies Phloem : Responses to Wounding and Fungal Inoculation

    Get PDF
    To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation withEndoconidiophora polonicaof spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (-)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen-host interactions of trees.Peer reviewe

    Pyroligneous Acids of Differently Pretreated Hybrid Aspen Biomass : Herbicide and Fungicide Performance

    Get PDF
    The pyroligneous acids (PAs) of woody biomass produced by torrefaction have pesticidal properties. Thus, PAs are potential alternatives to synthetic plant protection chemicals. Although woody biomass is a renewable feedstock, its use must be efficient. The efficiency of biomass utilization can be improved by applying a cascading use principle. This study is novel because we evaluate for the first time the pesticidal potential of PAs derived from the bark of hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) and examine simultaneously how the production of the PAs can be interlinked with the cascade processing of hybrid aspen biomass. Hybrid aspen bark contains valuable extractives that can be separated before the hemicellulose is thermochemically converted into plant protection chemicals. We developed a cascade processing scheme, where these extractives were first extracted from the bark with hot water (HWE) or with hot water and alkaline alcohol (HWE+AAE) prior to their conversion into PAs by torrefaction. The herbicidal performance of PAs was tested using Brassica rapa as the test species, and the fungicidal performance was proven using Fusarium culmorum. The pesticidal activities were compared to those of the PAs of debarked wood and of commercial pesticides. According to the results, extractives can be separated from the bark without overtly diminishing the weed and fungal growth inhibitor performance of the produced PAs. The HWE of the bark before its conversion into PAs appeared to have an enhancing effect on the herbicidal activity. In contrast, HWE+AAE lowered the growth inhibition performance of PAs against both the weeds and fungi. This study shows that hybrid aspen is a viable feedstock for the production of herbicidal and fungicidal active chemicals, and it is possible to utilize biomass according to the cascading use principle.Peer reviewe

    Miten muuttuva ilmasto vaikuttaa kuusten kasvuun?

    Get PDF
    Artikkeli julkaistu alunperin metla.fi sivustoll

    Impacts of coniferous bark-derived organic soil amendments on microbial communities in arable soil – a microcosm study

    Get PDF
    A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture

    How clonal differences and within-tree heterogeneity affect pore properties of hybrid aspen wood and biochar?

    Get PDF
    Production of applicable and homogeneous biochar for soil amendment purposes would benefit from knowledge on how feedstock heterogeneity impacts key biochar pore properties and how the properties are transformed due to pyrolysis. This study aimed (1) to quantify how clonal differences and within-tree heterogeneity of a hybrid aspen feedstock (wood) impact biochar pore properties and (2) to estimate how pore properties of non-pyrolysed wood materials are transformed when pyrolysed into biochar. The study was conducted by collecting samples from a hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clonal field trial. Key pore properties of non-pyrolysed and pyrolysed wood samples were quantified with 3D X-ray imaging and quantitative image analyses. The results demonstrated how pyrolysis shifted distinctively bi-modal pore size distributions of the wood samples towards smaller pore size regions. The bi-modal wood tissue structure controlled the pore structure also in the biochars. Due to decreasing cell wall thicknesses, the pyrolysis increased the porosity of the materials. While the thermal process homogenized differences in the wall thicknesses, the thicknesses of the feedstock were also shown to control the resulting thicknesses in the biochars. Mechanisms of biochar pore property formation can be considered important when designing applicable biochars for a chosen purpose. Clonal differences and within-tree heterogeneity had a direct impact only on the wall thicknesses and the pore diameters of vessels. These impacts can be of interest when planning feedstock utilization in biochar production. However, the results suggest that relatively homogeneous biochar can be produced from hybrid aspen feedstocks.Peer reviewe

    Tannins of Conifer Bark as Nordic Piquancy-Sustainable Preservative and Aroma?

    Get PDF
    Bark of Norway spruce and Scots pine trees contain large amounts of condensed tannins. Tannins extracted with hot water could be used in different applications as they possess antioxidative and antimicrobial activities. The use of bark tannins as e.g., food preservatives calls for increases in our knowledge of their antioxidative activities when applied in foodstuffs. To assess the ability of bark tannins to prevent lipid oxidation, hot water extracts were evaluated in a liposome model. Isolated tannins were also applied in dry-cured, salty meat snacks either as liquid extracts or in dry-powder form. Consumer acceptance of the snacks was tested by a sensory evaluation panel where outlook, odor, taste, and structure of the snacks were evaluated and compared to a commercial product without tannin ingredients. Our results show that conifer bark tannin-rich extracts have high capacity to prevent lipid oxidation in the liposome model. The efficacies of pine and spruce bark extracts were ten to hundred folds higher, respectively, than those of phenolic berry extracts. The bark extracts did not significantly influence the odor or taste of the meat snacks. The findings indicate that bark extracts may be used as sustainable food ingredients. However, more research is needed to verify their safety.Peer reviewe

    Fate of Antioxidative Compounds within Bark during Storage: A Case of Norway Spruce Logs

    Get PDF
    Softwood bark is an important by-product of forest industry. Currently, bark is under-utilized and mainly directed for energy production, although it can be extracted with hot water to obtain compounds for value-added use. In Norway spruce (Picea abies [L.] Karst.) bark, condensed tannins and stilbene glycosides are among the compounds that comprise majority of the antioxidative extractives. For developing feasible production chain for softwood bark extractives, knowledge on raw material quality is critical. This study examined the fate of spruce bark tannins and stilbenes during storage treatment with two seasonal replications (i.e., during winter and summer). In the experiment, mature logs were harvested and stored outside. During six-month-storage periods, samples were periodically collected for chemical analysis from both inner and outer bark layers. Additionally, bark extractives were analyzed for antioxidative activities by FRAP, ORAC, and H2O2 scavenging assays. According to the results, stilbenes rapidly degraded during storage, whereas tannins were more stable: only 5–7% of the original stilbene amount and ca. 30–50% of the original amount of condensed tannins were found after 24-week-storage. Summer conditions led to the faster modification of bark chemistry than winter conditions. Changes in antioxidative activity were less pronounced than those of analyzed chemical compounds, indicating that the derivatives of the compounds contribute to the antioxidative activity. The results of the assays showed that, on average, ca. 27% of the original antioxidative capacity remained 24 weeks after the onset of the storage treatment, while a large variation (2–95% of the original capacity remaining) was found between assays, seasons, and bark layers. Inner bark preserved its activities longer than outer bark, and intact bark attached to timber is expected to maintain its activities longer than a debarked one. Thus, to ensure prolonged quality, no debarking before storage is suggested: outer bark protects the inner bark, and debarking enhances the degradation
    corecore