122 research outputs found

    Spectrum of pi electrons in bilayer graphene nanoribbons and nanotubes: an analytical approach

    Full text link
    We present an analytical description of pi electrons of a finite size bilayer graphene within a framework of the tight-binding model. The bilayered structures considered here are characterized by a rectangular geometry and have a finite size in one or both directions with armchair- and zigzag-shaped edges. We provide an exact analytical description of the spectrum of pi electrons in the zigzag and armchair bilayer graphene nanoribbons and nanotubes. We analyze the dispersion relations, the density of states, and the conductance quantization.Comment: 8 figure

    Topological lattice using multi-frequency radiation

    Full text link
    We describe a novel technique for creating an artificial magnetic field for ultra-cold atoms using a periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau levels, as quantified by their Chern numbers.Comment: Replaced with a revised version, 15 pages, 6 figure

    Formation of solitons in atomic Bose-Einstein condensates by dark-state adiabatic passage

    Full text link
    We propose a new method of creating solitons in elongated Bose-Einstein Condensates (BECs) by sweeping three laser beams through the BEC. If one of the beams is in the first order (TEM10) Hermite-Gaussian mode, its amplitude has a transversal phase slip which can be transferred to the atoms creating a soliton. Using this method it is possible to circumvent the restriction set by the diffraction limit inherent to conventional methods such as phase imprinting. The method allows one to create multicomponent (vector) solitons of the dark-bright form as well as the dark-dark combination. In addition it is possible to create in a controllable way two or more dark solitons with very small velocity and close to each other for studying their collisional properties.Comment: 10 figure

    Non-Abelian gauge potentials for ultra-cold atoms with degenerate dark states

    Get PDF
    We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component
    • …
    corecore