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Non-Abelian gauge potentials for ultra-cold atoms with degenerate dark states
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We show that the adiabatic motion of ultra-cold, multi-level atoms in spatially varying laser fields
can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-
laser interaction exist. A pair of such degenerate dark states emerges e.g. if laser fields couple three
internal states of an atom to a fourth common one under pairwise two–photon-resonance conditions.
For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials
and discuss special examples. In particular we show that using orthogonal laser beams with orbital
angular momentum an effective magnetic field can be generated that has a monopole component.

PACS numbers: 03.65.Vf, 42.50.Gy, 03.75.Lm

Gauge fields are a central building block of the theory
of fundamental interactions. As dynamical variables they
are responsible for the forces between elementary parti-
cles. On the other hand also non-dynamical, i.e. pre-
scribed gauge fields are of interest in a variety of single-
and many-body quantum systems. E.g. an external mag-
netic field applied to a gas of non-interacting electrons
can lead to the integer quantum Hall effect [1]. In the
presence of a lattice potential, the eigenenergies of the
lowest Bloch band form a fractal structure depending on
the magnetic flux that passes through the unit cell [2]. If
in addition there are strong interactions between the par-
ticles as e.g. in a two dimensional electron gas subject to
a magnetic field, fractional quantum Hall structures [3]
and Laughlin liquids [4] can emerge.

In recent years ultra-cold atomic gases [5] have become
an ideal playground to experimentally investigate many-
body physics. This is due to their enormous versatility
and the advanced experimental techniques available in
atomic and optical physics. One of the most fascinating
subjects in this context is the study of effects of artificial
magnetic fields [6]. To create an artificial magnetic field
for neutral atoms one can e.g. rotate the trapping po-
tential confining the atoms. This experimentally feasible
but challenging approach is currently pursued in several
labs [7]. An alternative is based on the adiabatic mo-
tion of Λ-type 3-level atoms in laser fields that create
a non-degenerate dark state, i.e. an eigenstate of the
atom-laser interaction. If the dark-state of the atom is
space dependent, the motion of atoms adiabatically fol-
lowing it is associated with a topological or Berry phase
[8, 10]. A proper description of such a motion naturally
leads to Abelian gauge potentials [9, 10, 11]. As shown
in [12, 13] a non-vanishing effective magnetic field can
arise e.g. if Λ-type atoms interact with pairs of laser
fields that possess a relative orbital angular momentum.

The advantage of this scheme as compared to rotating
traps is that it is not limited to rotationally symmetric
configurations. Furthermore in the rotating traps only a
constant effective magnetic field is created [7], whereas
using optical means the effective magnetic field can be
controlled and shaped [13]. The description of the adi-
ababatic motion of atoms in terms of gauge potentials
has been generalized to j + 1 → j transitions in [14].
The effects of gauge potentials on strongly interacting,
bosonic atoms in one-dimensional optical lattices have
been analyzed [15], where it was shown that they lead
to interesting modifications of the Bose-Hubbard model.
An alternative way to create artificial magnetic fields in
lattice gases was recently suggested employing laser as-
sisted, state-dependent tunneling [16, 17] or oscillating
potentials with spatial modulations [18]. In all of these
systems the gauge fields have however U(1) symmetry,
i.e. they are Abelian.

As shown by Wilczek and Zee, non-Abelian gauge fields
can arise in the adiabatic dynamics of quantum systems
with multiple degenerate eigenstates [19]. One of the in-
teresting properties of non-Abelian gauge potentials is
the possibility of magnetic monopoles. The presence of
effective magnetic monopole fields in simple quantum
systems was first pointed out by Moody, Shapere and
Wilczek discussing the adiabatic nuclear rotation in a
diatomic molecule [20]. In the present paper we pro-
pose an experimentally realizable scheme which allows to
study the motion and the interaction of neutral quantum
gases in non-Abelian gauge fields. We show in particular
that the coupling of multi-level atoms to spatially varying
laser fields can give rise to such potentials for the atomic
center-of-mass motion. A necessary condition for this
is that the atom-laser interaction has degenerate dark
eigenstates with a non-vanishing non-adiabatic coupling.

Gauge structures in atomic systems with multiple de-
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generate dark states have first been discussed by Visser
and Nienhuis [14] considering atoms with a j + 1 → j

(j > 1) transition driven by circularly polarized laser
light, as shown in Fig. 1(a). Since in such a scheme
the dark states are exactly decoupled, the associated
gauge potentials have however again U(1) symmetry. The
simplest system with a non-vanishing adiabatic coupling
between degenerate dark states is the so-called tripod-
scheme shown in Fig. 1(b) [21]. For this scheme the
possibility of non-Abelian topological phases has been
predicted analyzing fractional adiabatic transfer in [22].
Furthermore applications to geometric quantum compu-
tation have been put forward and investigated in [23, 24].

After a general discussion of non-Abelian gauge poten-
tials in the adiabatic motion of atoms in laser fields, we
will introduce the tripod coupling scheme as the simplest
system leading to non-Abelian gauge fields. We then
will discuss specific examples. In particular we will show
that using orthogonal laser beams with orbital angular
momentum an effective magnetic field can be generated
that has a monopole component.

1 2 3 54 1 2 3
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FIG. 1: (a) j = 2 → j = 1 transition with two degener-
ate dark states in the manifolds {|1〉, |3〉, |5〉} and {|2〉, |4〉}
which are not coupled by non-adiabatic transitions. (b) Tri-
pod coupling scheme forming two degenerate dark states with
non-adiabatic coupling.

We start by extending the discussion of Wilczek and
Zee [19] and Moody, Shapere and Wilczek [20] to the adi-
abatic motion of atoms in stationary laser fields. For this
we consider atoms with multiple internal states. For fixed
position r the internal Hamiltonian Ĥ0(r) including the
laser interaction can be diagonalized to give a set of say N

dressed states |χn(r)〉 with eigenvalues εn(r), where n =
1, 2, . . . , N . The full quantum state of the atom describ-
ing both internal and motional degrees of freedom can
then be expanded in terms of the dressed states accord-
ing to |Φ〉 =

∑N

n=1 Ψn(r) |χn(r)〉. The N -dimensional
column vector of wave-functions Ψ = (Ψ1, Ψ2, . . . , ΨN)⊤

obeys the Schrödinger equation

i~
∂

∂t
Ψ =

[

1

2m
(−i~∇− A)2 + V

]

Ψ, (1)

m being the mass of the atoms, and V being an external
potential that confines the motion of atoms to a finite
region in space. Here A and V are N × N matrices
appearing due to the position dependence of the atomic

dressed states:

An,m = i~〈χn(r)|∇χm(r)〉, (2)

Vn,m = εn(r) δn,m + 〈χn(r)|V (r)|χm(r)〉. (3)

The off-diagonal elements of the matrices A and V are
typically much smaller than the difference of the dressed
atomic energies. In this case an adiabatic approxima-
tion can be applied which amounts to neglecting the off-
diagonal contributions. This leads to a separation of the
dynamics: Atoms in any one of the dressed states evolve
according to a separate Hamiltonian with a U(1), i.e.
Abelian gauge potential.

The adiabatic approximation fails however if there are
degenerate (or nearly degenerate) dressed states. This
is the case we are interested in. Off-diagonal (non-
adiabatic) couplings between the degenerate dressed
states can then no longer be ignored. Suppose the first
q atomic dressed states are degenerate (or nearly degen-
erate), and these levels are well separated from the re-
maining N − q. Neglecting transitions to the remaining
states, i.e. projecting the full Hamiltonian to this sub-
space leads to the Schrödinger equation for the reduced
column vector Ψ̃ = (Ψ1, . . . , Ψq)

⊤

i~
∂

∂t
Ψ̃ =

[

1

2m
(−i~∇− A)2 + V + Φ

]

Ψ̃ (4)

with A and V being the truncated q × q matrices. The
projection of the term A

2 to the q dimensional subspace
cannot entirely be expressed in terms of a truncated ma-
trix A. This gives rise to a scalar potential Φ which is
again a q × q matrix,

Φn,m =
1

2m

N
∑

l=q+1

An,l · Al,m (5)

=
~

2

2m

(

〈∇χn|∇χm〉 +

q
∑

k=1

〈χn|∇χk〉〈χk|∇χm〉

)

with n, m ∈ (1, . . . , q). The reduced q × q matrix A is
called the Berry connection.

Since the adiabatic states |χ1〉 . . . |χq〉 are degenerate,
any basis generated by a local unitary transformation
U(r) within the subspace is equivalent. The correspond-
ing local basis change

Ψ̃ → U(r)Ψ̃ (6)

leads to a transformation of the potentials according to

A → U(r)AU †(r) − i~ (∇U(r)) U †(r), (7)

Φ → U(r)ΦU †(r). (8)

These transformation rules show the gauge character of
the potentials A and Φ.



3

The Berry connection or vector potential A is related
to a curvature (an effective “magnetic” field) B as:

Bi =
1

2
ǫikl Fkl, Fkl = ∂kAl − ∂lAk −

i

~
[Ak, Al]. (9)

Note that the term 1
2εikl[Ak, Al] = (A × A)i does not

vanish in general, since the vector components of A do
not necessarily commute. In fact this term reflects the
non-Abelian character of the gauge potentials.

The generalized “magnetic” field transforms under lo-
cal rotations of the degenerate dressed basis (6) as

B → U(r)BU †(r). (10)

Thus, as expected, B is a true gauge field.
We will now construct a scheme of laser-atom inter-

actions that leads to a U(2) gauge potential. The first
requirement is the presence of degenerate (or nearly de-
generate) dressed states. Such a condition is fulfilled e.g.
for the two systems shown in Fig. 1. Each of them has
two degenerate dark states [25], i.e. dressed eigenstates
with no component of the excited, radiatively decaying
level. Thus the gauge potentials are 2 × 2 matrices. In
order for them to be truly non-Abelian, the off-diagonal
element i~〈χ1(r)|∇χ2(r)〉 has to be non-zero. One can
easily check that this expression always vanishes for the
system discussed in [14] and shown in Fig. 1(a). It is non-
vanishing however for the so-called tripod scheme shown
in Fig. 1(b) [21].

The Hamiltonian of the tripod system reads in inter-
action representation as

Ĥ0 = −~

(

Ω1|0〉〈1| + Ω2|0〉〈2| + Ω3|0〉〈3|
)

+ H.c., (11)

Parameterizing the Rabi-frequencies Ωµ with angle and
phase variables according to

Ω1 = Ω sin θ cosφ eiS1 ,

Ω2 = Ω sin θ sinφ eiS2 , (12)

Ω3 = Ω cos θ eiS3 ,

where Ω =
√

|Ω1|2 + |Ω2|2 + |Ω3|2, the adiabatic dark
states read

|D1〉 = sin φeiS31 |1〉 − cosφeiS32 |2〉, (13)

|D2〉 = cos θ cosφeiS31 |1〉 + cos θ sin φeiS32 |2〉

− sin θ|3〉, (14)

with Sij = Si−Sj. It is now straight-forward to calculate
the vector and scalar gauge potentials. This yields

A11 = ~
(

cos2 φ∇S23 + sin2 φ∇S13

)

,

A12 = ~ cos θ

(

1

2
sin(2φ)∇S12 − i∇φ

)

, (15)

A22 = ~ cos2 θ
(

cos2 φ∇S13 + sin2 φ∇S23

)

,

and

Φ11 =
~

2

2m
sin2 θ

(

1

4
sin2(2φ)(∇S12)

2 + (∇φ)2
)

,

Φ12 =
~

2

2m
sin θ

(

1

2
sin(2φ)∇S12 − i∇φ

)

(16)

(

1

2
sin(2θ)(cos2 φ∇S13 + sin2 φ∇S23) − i∇θ

)

,

Φ22 =
~

2

2m

(

1

4
sin2(2θ)

(

cos2 φ∇S13 + sin2 φ∇S23

)2

+ (∇θ)2
)

.

Since the level scheme considered in Fig. 1 corresponds to
that of Alkali atoms where |1〉, |2〉, and |3〉 are Zeeman
components of hyperfine levels, it is natural to assume
that the external trapping potential is diagonal in these
states and has the form V = V1(r)|1〉〈1| + V2(r)|2〉〈2| +
V3(r)|3〉〈3|. This still takes into account the fact that
magnetic, magneto-optical or optical dipole forces can be
different in different Zeeman states. According to Eq. (3),
the external potential in the adiabatic basis is then given
by a 2 × 2 matrix with elements Vjk = 〈Dj |V |Dk〉. Us-
ing the expressions for the dark states (13) and (14), we
arrive at

V11 = V2 cos2 φ + V1 sin2 φ,

V12 =
1

2
(V1 − V2) cos θ sin(2φ), (17)

V22 = (V1 cos2 φ + V2 sin2 φ) cos2 θ + V3 sin2 θ.

At this point it is instructive to consider some specific
examples. Let us first assume that the laser fields cou-
pling levels |1〉 and |2〉 are co-propagating, and have the
same frequency and the same orbital angular momentum
(if any). In this case their relative phase is fixed and can
be set S12 = 0. This leads to S13 = S23 ≡ S and the
expressions for the vector potential simplify to

A = ~

(

∇S −i cos θ∇φ

i cos θ∇φ cos2 θ∇S

)

. (18)

The components of the 2×2 matrix of the effective mag-
netic field can be easily evaluated and read

B11 = 0,

B12 = i~ sin θe−iS∇θ ×∇φ (19)

−~ cos θe−iS∇S ×∇φ(1 + cos2 θ),

B22 = −2~ cos θ sin θ∇θ ×∇S.

One recognizes that a large magnetic field requires
large gradients of the relative intensities of the fields,
parametrized by the angles φ and θ and a large gradient
of the relative phase S. Gradients of φ and θ on the order
of the wavenumber k can be achieved by using standing-
wave fields. Large gradients of S can be obtained from
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a running wave Ω3 orthogonal to the other two or by a
vortex beam with large orbital angular momentum. In
this case magnetic fluxes as large as one (in normalized
units) can be reached.

We now construct a specific field configuration that
leads to a magnetic monopole. For this let us consider
two co-propagating and circularly polarized fields Ω1,2

with opposite orbital angular momenta ±~ along the
propagation axis z. The field Ω3 propagates in x di-
rection and is linearly polarized along the y-axis:

Ω1,2 = Ω0
ρ

R
ei(kz∓ϕ), Ω3 = Ω0

z

R
eik′x. (20)

Here ρ is the distance from the z-axis and ϕ the az-
imuthal angle around this axis. It should be noted that
these fields have a vanishing divergence and obey the
Helmholtz equation. This in contrast to the fields which
have been suggested in [26] to create an Abelian mag-
netic monopole in a Λ system. The total intensity of the
laser fields (20) vanishes at a origin, which is a singular
point.

The vector potential associated with the fields can be
calculated from Eq. (15). It reads

A = −~
cosϑ

r sinϑ
êϕ

(

0 1
1 0

)

+
~

2
(kêz − k′êx) × (21)

×

[

(1 + cos2 ϑ)

(

1 0
0 1

)

+ (1 − cos2 ϑ)

(

1 0
0 −1

)]

.

The first term proportional to σx corresponds to a mag-
netic monopole of strength one at the origin. This is
easily seen by calculating the magnetic field

B =
~

r2
êr

(

0 1
1 0

)

+ · · · . (22)

The dots indicate non-monopole field contributions pro-
portional to σz , σy and the unity matrix.

In the present paper we have shown that the adia-
batic motion of multi-level atoms interacting with spa-
tially varying laser fields in the tripod-coupling config-
uration can lead to U(2) non-Abelian gauge potentials.
The system can easily be generalized to effective U(n),
n > 2, gauge structures using atomic configurations with
more than three laser fields coupling to a common excited
state. The strength of the effective magnetic fields can be
large if standing wave configurations or light beams with
large orbital angular momentum are used. As a specific
example we have identified a configuration of laser fields
which leads to a magnetic monopole.

Our approach is complementary to the recent proposal
of Osterloh et al. [27], who suggested the generation of
effective non-Abelian fields in lattice gases. For this they
employed a state-dependent manipulation of tunneling
amplitudes by lasers. These proposals make the study
of interacting degenerate Bose or Fermi gases in non-
Abelian gauge fields experimentally feasible.
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