17 research outputs found

    Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    Get PDF
    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception

    Plasmodesmal receptor-like kinases identified through analysis of rice cell wall extracted proteins

    Get PDF
    In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown to play important roles in plant growth, development, pathogen resistance, and cell death. In this study, cell biological approaches were used to identify potential PD-associated RLK proteins among proteins contained within cell walls isolated from rice callus cultured cells. A total of 15 rice RLKs were investigated to determine their subcellular localization, using an Agrobacterium-mediated transient expression system. Of these six PD-associated RLKs were identified based on their co-localization with a viral movement protein that served as a PD marker, plasmolysis experiments, and subcellular localization at points of wall contact between spongy mesophyll cells. These findings suggest potential PD functions in apoplasmic signaling in response to environmental stimuli and developmental inputs

    TNF SIGNALING DURING TISSUE DAMAGE-INDUCED NOCICEPTIVE SENSITIZATION IN DROSOPHILA

    Get PDF
    Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive sensitization in both Drosophila and vertebrates. In Drosophila larval model of nociceptive sensitization, UV irradiation in results in epidermal apoptosis and thermal allodynia. TNF/Eiger is produced from dying epidermal cells and acts its receptor in nociceptive sensory neurons to induce thermal allodynia. Inhibition of TNF signaling results in attenuation of nociceptive sensitization whereas epidermal apoptosis still occurs in the absence of TNF. Major gaps in this model are the precise relationship between apoptotic cell death and production of TNF/Eiger, downstream signaling mediators for TNFR/Wengen, and target genes that alter nociceptive behaviors. Here we show that apoptotic cell death and thermal allodynia are genetically and procedurally independent of each other while initiator caspase Dronc is required for both. An apoptotic function of Dronc activates downstream effector caspase leading to execution of epidermal cell death whereas a non-apoptotic function of Dronc induces activation of TNF signaling. Behavioral analyses with overexpression of full-length or processed soluble TNF/Eiger suggest that Dronc-mediated processing/secretion of TNF/Eiger is important for nociceptive sensitization. It is also supported by the fact that Dronc is required for thermal allodynia when TNF/Eiger is ectopically expressed in nociceptive sensory neurons that normally do not produce TNF/Eiger for nociceptive sensitization. We found that Traf3, Traf6, a p38 kinase, and the transcription factor nuclear factor kappa B mediates TNF signaling for nociceptive sensitization. Finally, downstream target genes of TNF signaling are revealed by sensory neuron specific microarray analysis and behavioral validation. A conserved epigenetic factor, Enhaner of zeste (E(z)) is required for thermal allodynia as a downstream target gene of TNF/Eiger signal transduction. Our findings suggest that an initator caspase is involved in TNF processing/secretion during nociceptive sensitization and that TNF pathway activation leads to transcription of genes required for sensory neurons to sensitize. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization in vertebrates

    A Targeted UAS-RNAi Screen in Drosophila Larvae Identifies Wound Closure Genes Regulating Distinct Cellular Processes

    No full text
    Robust mechanisms for tissue repair are critical for survival of multicellular organisms. Efficient cutaneous wound repair requires the migration of cells at the wound edge and farther back within the epidermal sheet, but the genes that control and coordinate these migrations remain obscure. This is in part because a systematic screening approach for in vivo identification and classification of postembryonic wound closure genes has yet to be developed. Here, we performed a proof-of-principle reporter-based in vivo RNAi screen in the Drosophila melanogaster larval epidermis to identify genes required for normal wound closure. Among the candidate genes tested were kinases and transcriptional mediators of the Jun N-terminal kinase (JNK) signaling pathway shown to be required for epithelial sheet migration during development. Also targeted were genes involved in actin cytoskeletal remodeling. Importantly, RNAi knockdown of both canonical and noncanonical members of the JNK pathway caused open wounds, as did several genes involved in actin cytoskeletal remodeling. Our analysis of JNK pathway components reveals redundancy among the upstream activating kinases and distinct roles for the downstream transcription factors DJun and DFos. Quantitative and qualitative morphological classification of the open wound phenotypes and evaluation of JNK activation suggest that multiple cellular processes are required in the migrating epidermal cells, including functions specific to cells at the wound edge and others specific to cells farther back within the epidermal sheet. Together, our results identify a new set of conserved wound closure genes, determine putative functional roles for these genes within the migrating epidermal sheet, and provide a template for a broader in vivo RNAi screen to discover the full complement of genes required for wound closure during larval epidermal wound healing

    Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers

    No full text
    The unexpected rearrangement of N-allyl-2-phenyl-4,5-dihydrooxazole-4-carboxamides in the presence of LiHMDS has been found. The key features are: (1) the net reaction consisted of 1,3-migration of the N-allyl group, (2) the rearrangement produced a congested aza-quaternary carbon center, (3) both cyclic and acyclic substrates underwent the unexpected rearrangement to afford products in moderate to high yields, and (4) the reaction seemed to be highly stereoselective. In addition, a plausible mechanism has been discussed

    TAMpepK Suppresses Metastasis through the Elimination of M2-Like Tumor-Associated Macrophages in Triple-Negative Breast Cancer

    No full text
    Triple-negative breast cancer (TNBC) accounts for approximately 10–15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs

    The matricellular protein CCN5 inhibits fibrotic deformation of retinal pigment epithelium

    No full text
    Retinal pigment epithelium (RPE) plays an essential role in maintaining retinal function, and its defect is thought to be critically implicated in various ocular disorders. This study demonstrated that the matricellular protein CCN5 was down-regulated in ARPE-19 cells treated with the pro-fibrotic agent transforming growth factor (TGF)-beta. A recombinant adenovirus expressing CCN5 (AdCCN5) was used to restore the level of CCN5 in these cells. AdCCN5 prevented TGF-beta-induced fibrotic changes, including disruption of tight junctions, up-regulation of mesenchymal marker proteins, and down-regulation of epithelial marker proteins. In addition, AdCCN5 prevented TGF-beta-induced functional defects, including increased migratory activity and reduced phagocytic activity. Notably, AdCCN5 reversed morphological and functional defects pre-established by TGF-beta prior to viral infection. The CCN5 level was down-regulated in RPE of 18-month-old Ccl2(-/)(-) mice, which exhibited retinal defects. Restoration of the CCN5 level via intravitreal injection of a recombinant adeno-associated virus expressing CCN5 (AAV9-CCN5) normalized the altered expression of mesenchymal, epithelial, and functional marker proteins, as assessed by western blotting and immunohistochemistry. Taken together, these data suggest that down-regulation of CCN5 is associated with fibrotic deformation of RPE under pathological conditions and that restoration of the CCN5 level effectively promotes recovery of deformed RPE.Y

    Potential neuron-autonomous Purkinje cell degeneration by 2 ',3 '-cyclic nucleotide 3 '-phosphodiesterase promoter/Cre-mediated autophagy impairments

    No full text
    Studies of neuroglial interaction largely depend on cell-specific gene knockout (KO) experiments using Cre recombinase. However, genes known as glial-specific genes have recently been reported to be expressed in neuroglial stem cells, leading to the possibility that a glia-specific Cre driver results in unwanted gene deletion in neurons, which may affect sound interpretation. 2 ',3 '-Cyclic nucleotide 3 '-phosphodiesterase (CNP) is generally considered to be an oligodendrocyte (OL) marker. Accordingly, Cnp promoter-controlled Cre recombinase has been used to create OL-specific gene targeting mice. However, in this study, using Rosa26-tdTomato-reporter/Cnp-Cre mice, we found that many forebrain neurons and cerebellar Purkinje neurons belong to the lineages of Cnp-expressing neuroglial stem cells. To answer whether gene targeting by Cnp-Cre can induce neuron-autonomous defects, we conditionally deleted an essential autophagy gene, Atg7, in Cnp-Cre mice. The Cnp-Cre-mediated Atg7 KO mice showed extensive p62 inclusion in neurons, including cerebellar Purkinje neurons with extensive neurodegeneration. Furthermore, neuronal areas showing p62 inclusion in Cnp-Cre-mediated Atg7 KO mice overlapped with the neuronal lineage of Cnp-expressing neuroglial stem cells. Moreover, Cnp-Cre-mediated Atg7-KO mice did not develop critical defects in myelination. Our results demonstrate that a large population of central neurons are derived from Cnp-expressing neuroglial stem cells; thus, conditional gene targeting using the Cnp promoter, which is known to be OL-specific, can induce neuron-autonomous phenotypes.N
    corecore