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TNF SIGNALING DURING TISSUE DAMAGE-INDUCED 

NOCICEPTIVE SENSITIZATION IN DROSOPHILA 

Juyeon Jo, M.S. 
 

 Advisory Professor: Michael J. Galko, Ph.D.   
 

Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive sensitization 
in both Drosophila and vertebrates. In Drosophila larval model of nociceptive sensitization, 
UV irradiation in results in epidermal apoptosis and thermal allodynia. TNF/Eiger is 
produced from dying epidermal cells and acts its receptor in nociceptive sensory neurons to 
induce thermal allodynia. Inhibition of TNF signaling results in attenuation of nociceptive 
sensitization whereas epidermal apoptosis still occurs in the absence of TNF. Major gaps in 
this model are the precise relationship between apoptotic cell death and production of 
TNF/Eiger, downstream signaling mediators for TNFR/Wengen, and target genes that alter 
nociceptive behaviors. Here we show that apoptotic cell death and thermal allodynia are 
genetically and procedurally independent of each other while initiator caspase Dronc is 
required for both. An apoptotic function of Dronc activates downstream effector caspase 
leading to execution of epidermal cell death whereas a non-apoptotic function of Dronc 
induces activation of TNF signaling. Behavioral analyses with overexpression of full-length 
or processed soluble TNF/Eiger suggest that Dronc-mediated processing/secretion of 
TNF/Eiger is important for nociceptive sensitization. It is also supported by the fact that 
Dronc is required for thermal allodynia when TNF/Eiger is ectopically expressed in 
nociceptive sensory neurons that normally do not produce TNF/Eiger for nociceptive 
sensitization. We found that Traf3, Traf6, a p38 kinase, and the transcription factor nuclear 
factor kappa B mediates TNF signaling for nociceptive sensitization. Finally, downstream 
target genes of TNF signaling are revealed by sensory neuron specific microarray analysis 
and behavioral validation. A conserved epigenetic factor, Enhaner of zeste (E(z)) is required 
for thermal allodynia as a downstream target gene of TNF/Eiger signal transduction. Our 
findings suggest that an initator caspase is involved in TNF processing/secretion during 
nociceptive sensitization and that TNF pathway activation leads to transcription of genes 
required for sensory neurons to sensitize. These findings have implications for both the 
evolution of inflammatory caspase function following tissue damage signals and the action of 
TNF during sensitization in vertebrates.   
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1.1 Nociceptive sensitization 

 The ability to differentiate noxious stimuli from innocuous stimuli is pivotal for the 

survival of an organism. Nociception is an evolutionarily conserved sensory process for 

detecting harmful stimuli and is an essential mechanism to avoid potential tissue injury. 

Specialized peripheral sensory neurons called nociceptors detect noxious stimuli such as 

extreme temperatures, harsh mechanical stimuli, and pungent chemicals (1). Sensory 

perception of noxious stimuli by nociceptors results in two different outputs. First, action 

potentials initiated by nociceptors are relayed to the central nervous system and are processed 

by the brain, which generates cognitive awareness of sensation. Second, nociceptive signals 

trigger motor neurons and induce appropriate withdrawal behavior(s) to minimize contact 

with damaging stimuli (2-4). Molecular, pharmacological, and genetic analyses revealed 

multiple ion channels as molecular transducers of noxious stimuli in nociceptors. For 

example, Vanilloid Transient Receptor Potential 1 (TRPV1) mediates thermal nociception as 

well as a response to capsaicin (5) whereas Melastatin TRP 8 (TRPM8) is a cold sensitive 

channel (6). PIEZO and degenerin/epithelial Na (+) (DEG/ENaC) channels are essential for 

mechanical nociception (7, 8) and Ankyrin TRP1 (TRPA1) responds to allyl isothiocyanate 

(from wasabi) and allicin (from garlic) (9).  
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 Once noxious stimuli are perceived by molecular transducers, a variety of voltage-

gated sodium, potassium, and calcium channels are activated (2). Voltage-gated sodium 

channels are important for generating and propagating action potentials to convey 

nociceptive signals to the central nervous system. Loss-of-function studies demonstrated that 

Nav1.7 and Nav1.8 sodium channels play a key role in mechanical and thermal 

hypersensitivity (4, 10). Voltage-gated calcium channels are critical for transducing 

alterations in membrane potential into intracellular calcium transient, thus playing a key role 

in neurotransmitter release and gene expression (2, 11).  

One important characteristic of sensory neurons is plasticity. Receptive properties of 

nociceptors can be modulated by various forms of tissue damage, nerve injury, inflammation, 

or bacterial infection (12-15). Alteration of sensitivity in nociceptors is called “nociceptive 

sensitization” and this adaptive modulation protects the injured tissue from further damage 

and enhances repair processes. Nociceptive sensitization elicits behavioral changes such as 

pain response to normally innocuous stimuli (allodynia) or exaggerated pain response to 

noxious stimuli (hyperalgesia). In addition, spontaneous pain may persist even in the absence 

of stimuli (16). Tissue damage-induced nociceptive sensitization is also called inflammatory 

pain because it mainly arises from the production and release of inflammatory mediators 

such as prostaglandine E2 (PGE2) (17), bradykinin (18), adenosine triphosphate (ATP) (19), 
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protons (20), nerve growth factor (NGF) (21), histamine (22), and cytokines such as tumor 

necrosis factor alpha (TNF-α) and interleukins (23, 24). These inflammatory mediators are 

produced from non-neuronal cells as well as from primary sensory neuron terminals (2). 

Intensive investigations of molecular mechanisms underlying the action of inflammatory 

mediators revealed that most of these mediators directly activate various receptors on 

nociceptors and then activate downstream signaling cascades of second messengers and 

kinases (13, 25). As a result, up-regulated expression of pro-nociceptive genes such as 

cytokines, post-translational modification and cellular redistribution of ion channels 

collectively contributes to the induction and/or maintenance of nociceptive sensitization (26-

29). However, it still has not been examined thoroughly how these signaling cascades are 

regulated, what downstream molecular targets of each signaling cascade are, and how 

potential interplay/convergence of multiple signaling occurs to induce nociceptive 

sensitization.  

 

1.2 Drosophila model for nociceptive biology and tissue injury-induced nociceptive 

sensitization 

 Drosophila is an advantageous model for elucidating basic principles of neuroscience 

because sophisticated genetic manipulations are available (30). The use of Drosophila has 
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contributed to important discoveries of genes affecting learning and memory, circadian 

rhythms, sexual behavior, cell fate specification, olfaction, aging, and neurodegeneration in 

the last four decades (30-32).  These works have revealed that the cellular and neural network 

characteristics including neuronal architecture and synaptic transmission are well conserved 

in the Drosophila nervous system. Moreover, approximately 65% of human disease genes are 

conserved in Drosophila, thereby making this organism attractive as a model for human 

disease (32).  

Drosophila has also emerged as a valuable model for studying nociceptive biology 

(33). Drosophila larvae exhibit a distinctive aversive behavior: corkscrew-like rolling when 

they are exposed to high temperature above 38 °C or to harsh mechanical stimuli (34-36). 

This aversive withdrawal behavior is mediated by nociceptive sensory neurons called class 

IV multiple dendritic (MD) neurons, which exhibit complex dendritic branching (34, 35, 37, 

38). Nociceptive sensory neurons in Drosophila are relatively simple but structurally and 

functionally similar to mammalian nociceptors (33). In Drosophila larvae, class IV MD 

neurons are clustered with other MD neurons, external sensory organs, and internal 

chordotonal neurons in each segment in a repeated fashion (39). Cell bodies of class IV MD 

neurons are located underneath the epidermis and above the larval body wall muscle (40, 41).  

Each neuron in each segment has an axonal projection to the ventral nerve cord, which is 
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functionally analogous to the spinal cord in vertebrate (42, 43).  Dendrites of class IV MD 

neurons grow along the basal surface of the epidermis because interactions between neuronal 

integrins and epidermal laminins prevent dendritic growth into the epidermis (41). The naked 

dendritic nerve endings of each cell does not overlap with their sister branches or/and another 

class IV MD neurons in the same segment but provide a complete coverage within the 

segment for instant sensory detection (38). Inhibition of class IV MD neurons by expression 

of tetanus toxin abrogates noxious thermal and mechanical stimuli-induced rolling behavior 

(35). In contrast, optogenetic activation of class IV MD neurons produces rolling responses 

in the absence of noxious stimuli, suggesting that these neurons are polymodal and are 

required for nociception (34). Importantly, TRP channels and DEG/ENaC channels play an 

essential role in Drosophila nociception similar to vertebrates (35, 44, 45). For example, 

Painless TRP channel is required for both thermal and mechanical nociception (34, 35). 

Drosophila TRPA1 homolog detects noxious chemicals such as allyl isothiocyanate (46) and 

thermal stimuli (44). PPK1 (45), PPK26 (47) DEG/ENaC channels and Piezo (48) are 

responsible for mechanical pain detection. These suggest a strong conservation of the 

molecular basis for nociception in flies.  

 Although anatomically and functionally, Drosophila nociception highly resembles 

vertebrate nociceptive biology, it was unknown if Drosophila nociceptors exhibit complex 
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features such as sensitization in response to injury. Babcock et al. (36) examined if 

Drosophila larvae develop hypersensitivity following tissue injury and succeeded in 

modeling tissue damage-induced nociceptive sensitization in fly larvae. In this model, a sub-

lethal dose of UVC irradiation results in apoptotic epidermal cell death while the underlying 

nociceptive sensory neurons remain intact. UV irradiated larvae develop thermal 

hypersensitivity displaying both allodynia and hyperalgesia. Several conserved signaling 

pathways have been uncovered using the fly model of nociceptive sensitization. These 

include TNF (36), Hedgehog (Hh) (49), and Tachykinin (Substance P in vertebrate) (50) 

signaling pathways. In addition, the initiator caspase Dronc was identified as a contributor 

from epidermal tissue for nociceptive sensitization (36). The fact that the peak response of 

hyperalgesia is earlier than that of allodynia and hyperalgesia resolves before allodynia peaks 

suggests that these two forms of hypersensitivity are regulated by distinct mechanisms. 

Indeed, Babcock and colleagues found that the initiator caspase Dronc, TNF, and Tachykinin 

signaling are only required for allodynia whereas Hh signaling is required for both allodynia 

and hyperalgesia (36, 49).  These observations demonstrated that the fundamental 

mechanisms and signaling pathways of nociceptive sensitization could be elucidated using 

the power of Drosophila genetics.   
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1.3 The TNF Signaling Pathway in Nociceptive sensitization 

 TNF was initially described as a substance that caused regression of tumors and the 

name tumor necrosis factor alpha (TNFα) was given in 1975 (51). Since then, numerous 

groups identified TNF-related ligands and receptors contributing to the emergence of the 

TNF superfamily (52, 53). Members of the TNF superfamily are involved in both 

development/homeostasis and various diseases, playing important roles in immune and 

inflammatory responses, development of bone, angiogenesis, and cell death (53). Members 

of the TNF superfamily contain TNF homology domain (THD), which binds to the cysteine-

rich domain of the TNF receptor (TNFR) (54). Most TNF-related ligands are membrane-

bound proteins and distinct proteases process them into their soluble forms. For example, a 

TNFα converting enzyme (TACE) protease acts on TNFα (55, 56) whereas another 

metalloprotease, matrilysin processes Fas ligand, a TNF-related ligand (57). Although 

membrane-bound TNF can trigger downstream signaling, the mechanisms are not well 

understood (58). The binding of TNF to TNFR recruits adaptor proteins such as TNFR-

associated death domain proteins (TRADD) or TNFR-associated factors (TRAFs) to mediate 

the downstream signal transduction (59, 60). This event ultimately activates nuclear factor 

kappa B (NF-κB) (61). Mechanisms of NF-κB activation are various and depend on the 

particular cell type. The assembly of downstream mediators of TNFR recruits the IκB kinase 
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resulting in phosphorylation and subsequent degradation of NF-κB inhibitor (62). Free NF-

κB translocates to the nucleus and activates expression of target genes (63). In addition to 

NF-kB activation, caspases and mitogen-activated protein kinases (MAPKs) can be targeted 

by TNF signaling mediating various cellular responses including proliferation, cell death, and 

inflammation (52, 64).   

As a pro-inflammatory cytokine, TNF has been associated with both inflammatory 

and neuropathic pain (23). Intra-plantar injections of TNF in rats causes thermal 

hypersensitivity (65) while application of TNF to the sciatic nerve induces bursting activity 

in primary nociceptive afferent fibers (66). Increased expression of TNF and TNFR were 

detected in a model of chronic constriction injury (CCI) as well as in human patients with 

painful neuropathy (67, 68). Several studies observed downstream signaling events that are 

induced by the action of TNF in the context of nociceptive sensitization. For example, p38 

MAP kinase has been implicated in TNFα-induced mechanical hypersensitivity on cultured 

DRG neurons (69). However, the underlying mechanisms and nociceptive sensory neuron-

specific functions of downstream players of the TNF signaling pathway in nociceptive 

biology remain poorly understood. In addition, subsequent target genes subjected to 

transcriptional regulation by NF-κB transcription factor during nociceptive sensitization are 

unknown. A recent study focused on the loss-of-function of TNF/TNFR in primary 
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nociceptive sensory neuron shed light on how TNF signaling contributes to proper 

development and to the function of nociceptors (70) while the exact action of TNF signaling 

for nociceptive sensitization under tissue injury conditions still remain to be tested.  

In Drosophila, the TNF ligand, Eiger and two TNF receptor homologs, Wengen and 

Grindelwald, were identified through genetic screens and bioinformatic analyses (71-73). 

Like its function in vertebrate system, Drosophila TNF signaling is associated with cell death 

in multiple tissues including the adult eye (71, 72, 74, 75).  In addition, TNF signaling plays 

important roles in degeneration of neuromuscular junction, non-autonomous proliferation of 

imaginal epithelium, and immune responses to microbes (76-78).  

 Importantly, TNF/Eiger and its receptor TNFR/Wengen are involved in tissue-

damaged-induced thermal allodynia caused by UV irradiation (36). In this model, TNF/Eiger 

is produced by apoptotic epidermal cells. Eiger acts through its receptor, Wengen, which 

functions in class IV MD neurons to mediate development of thermal allodynia (Figure 1.1). 

This study established a phylogenetically conserved role for TNF signaling in nociceptive 

sensitization as TNF/TNFR mediate various types of sensitization in vertebrates (23, 68). 

Although TNF/Eiger is produced from dying epidermal cells in UV-induced sensitization 

model, whole animal mutants lacking TNF/Eiger still show severe morphological changes 

and active caspase-3 staining in the larval epidermis following UV irradiation, suggesting 
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Figure 1.1 A previous model for TNF-mediated thermal allodynia in Drosophila larvae 

UV irradiation causes apoptotic cell death in epidermis and the production or activation of 

TNF/Eiger. Subsequently, the interaction of TNF/Eiger and its receptor TNFR/Wengen in 

nociceptive sensory neurons induces nociceptive sensitization.  

Figure is Adapted from Babcock et al. Current biology (2009) (36) 
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that TNF signaling is not required for the larval epidermal cell death. Hence, the exact 

relationship between apoptotic cell death and production of TNF/Eiger in the epidermis 

remains unclear. In addition, TNF/Eiger originates from epidermal cells and its receptor acts 

in the nociceptive sensory neuron, there are substantial questions regarding how this 

transmembrane ligand interacts/binds to its receptor to mediate sensitization. Moreover, it 

was not resolved what the downstream mediators for TNF/TNFR signal transduction are in 

class IV MD neurons to modulate its activity during nociceptive sensitization.  

 

1.4 Apoptotic and Non-apoptotic functions of Caspases 

 UV irradiation leads to nociceptive sensitization in vertebrate and fly (36, 79). In 

vertebrates, inflammatory cytokines including interleukins and TNFα are produced by 

irradiated keratinocytes contributing to nociceptive sensitization (80). Acute exposure to UV 

also induces oxidative stress (81), DNA damage (82), inflammation (83), and apoptosis (84). 

UV-induced apoptotic cell death is a consequence of stimulations of several pathways 

including activation of p53 following DNA damages, production of reactive oxygen species 

(ROS), and activation of death receptors.  These ultimately lead to cytochrome C release 

from mitochondria and activation of apoptotic machinery. The exact relationship between 

UV-induced apoptotic cell death and production of inflammatory mediators remains unclear. 
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 Apoptotic cell death is executed by a cascade of cysteine proteases called caspases 

(85). Caspases are categorized as either apoptotic or inflammatory caspases (86). Apoptotic 

caspases are highly conserved in multicellular organisms playing an essential role in 

regulation and execution of cell death during the development and homeostasis (87). 

Apoptotic caspases are classified into two large groups, the initiator caspase (Caspase-2, 8, 9, 

10) and the effector caspase (Caspase-3, 6, 7) (87). The initiator caspase forms an 

apoptosome complex with apoptotic protease activating factor 1 (Apaf-1) to activate 

downstream effector caspases, subsequently leading to the deconstruction of the cellular 

machinery (88). In contrast to apoptotic caspases, inflammatory caspases function in 

inflammation and in processing of inflammatory cytokines. This group of caspases includes 

caspase-1, 2, 4, 5, 11, and 12.  Among them, caspase-1, which is initially identified as 

interleukin (IL)-1β processing enzyme (89), is most well characterized. Inflammatory 

caspases are activated by a complex called inflammasome that senses internal and external 

danger signals such as bacteria, toxins, and substances released from damaged cells (86). The 

inflammasome also promotes the repair of injured sites (90), suggesting an essential role of 

inflammasome mediated-caspase-1 activation in response to cellular stress and in host 

defense.  
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 Both apoptotic and inflammatory caspases has been implicated in acute or chronic 

sensitization in several studies. For example, Caspase-6 regulates TNFα secretion from 

microglia in an inflammatory pain model (91). The administrations the specific inhibitors 

targeting caspase-3, 8, or 9 reduce both chemotherapy drug (vincristine)-induced and 

TNFα−induced mechanical hyperalgesia (92). Caspase-1 also has been investigated in 

nociceptive sensitization because of its function in processing pro-inflammatory cytokine IL-

1β. Knockout mice lacking caspase-1 show reduced inflammatory mechanical 

hypersensitivity (93). The pretreatment of caspase-1-specific inhibitor attenuates incision-

induced mechanical allodynia and thermal hyperalgesia (94). These studies suggest that both 

apoptotic and inflammatory caspases play an important role in nociceptive sensitization. 

However, exact role of caspases in nociceptive sensitization still remains undefined. 

Particularly, function of both categories of caspases has not been examined directly in UV-

induced nociceptive sensitization although these caspases are activated by irradiation (95, 

96).  

In Drosophila, core apoptotic caspases are well conserved while the role of cytochrome C 

release remains contradictory (97, 98). Death regulator Nedd2-like caspase (Dronc) functions 

as the initiator caspase in most tissues for the execution of apoptosis (99, 100). In the absence 

of an apoptosis-inducing signal, the inhibitor of apoptosis protein (DIAP) prevents activation 
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of Dronc (101). This inhibition is released by expression of pro-apoptotic genes such as 

reaper, hid, grim, and sickle (102, 103). Dronc interacts with Death-associated apaf-1 related 

killer (Dark) to form the apoptosome (104-106) and this complex activates caspase-3-like 

effector caspases, Death related ICE-like caspase (Drice) (107-109) and Death caspase-1 

(Dcp-1) (110) that cleave the cellular substrates that lead to downstream apoptosis (Figure 

1.2) (111). Drosophila caspases also have been implicated in non-apoptotic processes such as 

innate immunity (112), sperm individualization (113), compensatory proliferation (114), and 

dendritic pruning (115).  

 In our Drosophila model of tissue damage-induced nociceptive sensitization, Dronc is 

required for both UV-induced epidermal apoptosis and thermal allodynia (36). This study 

directly showed that function of apoptotic initiator caspase in damaged tissue is essential for 

the development of nociceptive sensitization. However, the molecular mechanism of how 

Dronc contributes to nociceptive sensitization still needs to be elucidated. In addition, it 

remains unclear if upstream apoptotic genes and downstream effector caspases are required 

for nociceptive sensitization.   
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Figure 1.2 Diagram for canonical apoptotic cell death pathway in Drosophila 

A schematic showing the signaling cascade of the apoptotic cell death pathway. An 

apoptosome consists of initiator caspase, Dronc and Drosophila Apaf-1, Dark. The 

apoptosome is inhibited by DIAP1. Expression of pro-apoptotic genes by stress signals (eg. 

UV) causes the release of DIAP1 inhibition and the resulting free apoptosome activates 

downstream effector caspases, thus leading to cell death. p35 is an inhibitor of effector 

caspases.   

Pro-apoptotic genes

DIAP1

Dronc
(Initiator Caspase)

Dark
(dApaf-1)

Effector
Caspasep35

UV

Apoptosome
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 In this thesis, I will explore contributions of Dronc and entire cell death pathway to 

nociceptive sensitization. In addition, I will elucidate some aspects of TNF ligand regulation 

in epidermal cells as well as downstream signaling mediators and transcriptional target genes 

in nociceptive sensory neurons using the Drosophila model. 
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Chapter 2: Materials and Methods 
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2.1 Fly strains 

w1118 (116) was used as a control for mutants. Null alleles were used for behavioral 

tests:  eiger1 and eiger3 served to inhibit TNF signaling (72). droncI29 (117), darkG8, darkS7, 

darkH16 (118), DriceΔ1 (119), strica4 (120), skle1, skle3 (121), and decayΔK2 (122) are mutant 

alleles for cell death signaling pathway and caspases.  traf6Ex1 (123), p38a1 (124), dl1 (125), 

relE20 (126) and Dif1 (127) were used to test downstream mediators of TNF signaling. 

Hypomorphic alleles were used for behavioral tests:  Drice17 (128), hid1 (129), dreddEP1412 

(130), are mutant alleles for cell death signaling pathway and caspases.  dammf02209 (131) and 

dcp-1prev (132) are undefined mutant alleles but predicted to be loss of function due to a 

deletion and a frameshift respectively. These are mutant alleles for cell death signaling 

pathway and caspases.  decayΔK3 (122) was used as control for decayΔK2 allele.  The Gal4/UAS 

system (133) was used to express transgenes in tissue specific manner. A58 Gal4 (134), e22C 

Gal4 (135) , and pannier Gal4 (136) were used to drive larval epidermal tissue specific 

expression of UAS-transgene. ppk1.9 Gal4 (137) was used to drive expression of UAS-

transgene in class IV MD nociceptive sensory neurons. UAS-transgenes used: UAS-regg1 

(72), UAS-eiger60 (soluble TNF) (138), UAS-Dronc (139), UAS-hid (140), UAS-grim (141), 

and UAS-reaper (142) , UAS-DIAP1 (140), UAS-p35 (143), UAS-ptcDN (144), UAS-DTKR-

GFP (145), UAS-eGFP (Bloomington), UAS-miRHG (146). UAS-DroncRNAi(8091R1) (NIG) 
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UAS-EigerRNAi (72), UAS-WengenRNAi (71). UAS-RNAi lines from Vienna Drosophila 

Research Center (VDRC) (147): 21830 (grim), 12045 (reaper), 8269 (hid), 34836 (traf3), 

16125 (traf6), 52277 (p38), 45998 (dorsal), 107072 (E(z)). JF02826 targeting E(z) and UAS-

GFPRNAi (stock number: 9930) were from Bloomington stock center. ppk-CD4-tdTom was 

used to label nociceptive sensory neurons (148). To temporally induce overexpression of 

transgenes, tub-gal80ts (149) was used in combination with Gal4/UAS.  

 

Table 2.1 Genotypes for each figure panel  

Figure genotype 
Figure 3.1A w1118;;A58 Gal4/UAS-Grim 
	  	   w1118;UAS-Reaper/+;A58 Gal4/+ 
Figure 3.1B w1118;tubGal80ts/+;pnr-Gal4,UAS-eGFP/+ 
	  	   w1118,UAS-Hid/+;tubGal80ts/+;pnr-Gal4,UAS-eGFP/+ 
Figure 3.1C w1118;e22C Gal4/+; 
	  	   w1118;e22C Gal4/+; UAS-HidRNAi(v8269)/+ 
	  	   w1118;e22C Gal4/ UAS-RHGmiRNA; 
Figure 3.2 A-B, 3.5 A-
B 

w1118; 

Figure 3.2 C w1118;;hid1 
Figure 3.2 D w1118;; hid1/Df(3L)ED225, P(3'RS5+3.3')ED225 
Figure 3.2 E w1118;;sickle1/ sickle3 
Figure 3.2 F w1118;;droncI29 
Figure 3.2 G w1118;darkG8/darkH16 
Figure 3.2 H w1118;darkG8/darkS7 
Figure 3.2 I w1118;darkS7/darkH16 
Figure 3.2 J w1118, dreddEP1412; 
Figure 3.2 K w1118;strica4 
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Figure 3.2 L w1118;;driceΔ1 
Figure 3.2 M w1118;dcp-1prev 
Figure 3.2 N w1118;;decayΔK2 
Figure 3.2 O w1118;dammf02209 
Figure 3.3A  w1118;;A58 Gal4/+ 
	  	   w1118;UAS-RHGmiRNA;A58 Gal4/+ 

	  	  
w1118;UAS-GrimRNAi(v21830)/+;A58 Gal4/UAS-
ReaperRNAi(v12045) ,UAS-HidRNAi(v8269) 

	  	   w1118;UAS-DIAP1.H/+; A58 Gal4/+ 
	  	   w1118;UAS-DroncRNAi (8081R1)/+; A58 Gal4/+ 
Figure 3.3B  w1118; 
	  	   w1118;;hid1 
	  	   w1118;;sickle1/ sickle3 
	  	   w1118;strica4 
	  	   w1118, dreddEP1412; 
	  	   w1118;;decayΔK3 
	  	   w1118;;decayΔK2 
	  	   w1118;dammf02209 
Figure 3.3C w1118; 
	  	   w1118;;droncI29 
	  	   w1118;darkG8/darkH16 
	  	   w1118;darkG8/darkS7 
	  	   w1118;darkS7/darkH16 
	  	   w1118;;driceΔ1 
	  	   w1118;dcp-1prev 
	  	   w1118;dcp-1prev;drice Δ1 
	  	   w1118;eiger1/+ 
	  	   w1118;eiger3/+ 
	  	   w1118;eiger1/eiger3 
Figure 3.3D,  3.4A-B  w1118;;A58 Gal4/+ 
	  	   w1118;UAS-DIAP1.H/+; A58 Gal4/+ 
	  	   w1118;UAS-DroncRNAi (8081R1)/+; A58 Gal4/+ 
	  	   w1118;e22C Gal4/+ 
	  	   w1118;e22C Gal4/UAS-p35 
	  	   w1118;e22C Gal4/ UAS-DroncRNAi (8081R1) 
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Figure 3.4C-D  w1118; 
	  	   w1118;;droncI29 
	  	   w1118;darkG8/darkH16 
	  	   w1118;darkG8/darkS7 
	  	   w1118;darkS7/darkH16 
	  	   w1118;;drice17 
Figure 3.4E w1118;UAS-p35/+ 
	  	   w1118;UAS-DIAP1.H/+ 
	  	   w1118;UAS-DroncRNAi (8081R1)/+ 
Figure 3.5A-B w1118;;A58 Gal4/+ 
Figure 3.5C w1118;UAS-DroncRNAi (8081R1)/+; A58 Gal4/+ 
	  	   w1118;UAS-EigerRNAi /+; A58 Gal4/+ 
Figure 3.6A, C-D w1118;;ppk1.9 Gal4/+ 
	  	   w1118;;ppk1.9 Gal4/ UAS-Traf3RNAi(v34836) 
	  	   w1118;UAS-Traf6RNAi(v16125)/+;ppk1.9 Gal4/+ 
	  	   w1118;;ppk1.9 Gal4/UAS-p38aRNAi(v52277) 
	  	   w1118;;ppk1.9 Gal4/UAS-dlRNAi(v45998) 
	  	   w1118;UAS-DroncRNAi(8081R1)/+;ppk1.9 Gal4/+ 
Figure 3.6B w1118;;UAS-Traf3RNAi(v34836)/+ 
	  	   w1118;UAS-Traf6RNAi(v16125)/+ 
	  	   w1118;;UAS-p38aRNAi(v52277)/+ 
	  	   w1118;;UAS-DorsalRNAi(v45998)/+ 
Figure 3.7A w1118; 
	  	   w1118, traf6EX1; 
	  	   w1118;;p38a1 
	  	   w1118;dl1 
	  	   w1118;;relishE20 
	  	   w1118;Dif1 
Figure 3.7B-C w1118; 
	  	   w1118, traf6EX1; 
	  	   w1118;;p38a1 
	  	   w1118;dorsal1 
	  	   w1118;;relishE20 
Figure 3.8A w1118;regg1/+;ppk1.9 Gal4/+ 
	  	   w1118; regg1/UAS-WengenRNAi/+;ppk1.9 Gal4/+ 
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	  	   w1118; regg1/+;;ppk1.9 Gal4/ UAS-Traf3RNAi(v34836) 
	  	   w1118; regg1/UAS-Traf6RNAi(v16125)/+;ppk1.9 Gal4/+ 
	  	   w1118; regg1/+;;ppk1.9 Gal4/UAS-p38aRNAi(v52277) 
	  	   w1118; regg1/+;;ppk1.9 Gal4/UAS-DorsalRNAi(v45998) 
	  	   w1118; regg1/UAS-DroncRNAi(8081R1)/+;ppk1.9 Gal4/+ 
Figure 3.8B w1118;UAS-PtcDN/+;ppk1.9 Gal4/+ 
	  	   w1118;UAS-PtcDN/UAS-DroncRNAi (8081R1);ppk1.9 Gal4/+ 
	  	   w1118;UAS-DTKR-GFP/+;ppk1.9 Gal4/+ 

	  	  
w1118;UAS- DTKR-GFP/UAS-DroncRNAi (8081R1); 
ppk1.9 Gal4/+ 

Figure 3.9B w1118;tubGal80ts/+;A58 Gal4/+ 
	  	   w1118;tubGal80ts/+;A58 Gal4/UAS-Dronc 
	  	   w1118;tubGal80ts/regg1;A58 Gal4/+ 
	  	   w1118;tubGal80ts/UAS-Eiger 60;A58 Gal4/+ 
Figure 3.10 w1118;tubGal80ts/+;A58 Gal4/+ 
	  	   w1118;tubGal80ts/+;A58 Gal4/UAS-Dronc 
	  	   w1118;tubGal80ts/UAS-EigerRNAi;A58 Gal4/UAS-Dronc 
	  	   w1118;tubGal80ts/UAS-p35;A58 Gal4/UAS-Dronc 
	  	   w1118;tubGal80ts/UAS-EigerRNAi;A58 Gal4/+ 
	  	   w1118;tubGal80ts/UAS-p35;A58 Gal4/+ 
Figure 3.11A w1118;;A58 Gal4/+ 
	  	   w1118;UAS-Eiger/+;A58 Gal4/+ 
Figure 3.11B w1118;Eiger-Gal4/UAS-GFP 
Figure 3.12 w1118;e22C Gal4/UAS-GFPRNAi(9331) 
	  	   w1118;e22C Gal4/UAS-TACERNAi(v2733) 
	  	   w1118;e22C Gal4/UAS-TACERNAi(v106335) 
Figure 3.14 w1118;tubGal80ts/+;A58 Gal4/+ 
	  	   w1118;tubGal80ts/regg1;A58 Gal4/+ 

	  	  
w1118;tubGal80ts/regg1, UAS-DroncRNAi(8081R1) 
;A58 Gal4/+ 

	  	   w1118;tubGal80ts/UAS-Eiger60;A58 Gal4/+ 

	  	  
w1118;tubGal80ts/UAS-Eiger60, UAS-DroncRNAi(8081R1) 
;A58 Gal4/+ 

Figure 3.15 w1118;;ppk1.9 Gal4/UAS-mcD8GFP 
	  	   w1118;regg1/+;ppk1.9 Gal4/UAS-mcD8GFP 
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Figure 3.16A w1118;UAS-GFPRNAi(9331)/+;ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(v107072)/+;ppk1.9 Gal4/+ 
	  	   w1118;;ppk1.9 Gal4/UAS-GarnetRNAi(v31390) 

	  	  
w1118;UAS-Allatostatin receptorA1RNAi(v101395)/+ 
;ppk1.9 Gal4/+ 

	  	   w1118;;ppk1.9 Gal4/UAS-Trissin receptorRNAi(v7886) 

	  	  
w1118;UAS-Methuselah-like 8RNAi(v100246)/+ 
;ppk1.9 Gal4/+ 

Figure 3.16B w1118;UAS-GFPRNAi(9331)/regg1;ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(v107072)/regg1;ppk1.9 Gal4/+ 
	  	   w1118;regg1/+;ppk1.9 Gal4/UAS-GarnetRNAi(v31390) 

	  	  
w1118;UAS-Allatostatin receptorA1RNAi(v101395)/regg1 
;ppk1.9 Gal4/+ 

	  	  
w1118;regg1/+;ppk1.9 Gal4/UAS-Trissin 
receptorRNAi(v7886) 

	  	  
w1118;UAS-Methuselah-like 8RNAi(v100246)/regg1 
;ppk1.9 Gal4/+ 

Figure 3.17B, 3.18A-B w1118;UAS-GFPRNAi(9331);ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(v107072);ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(BL27993);ppk1.9 Gal4/+ 
Figure 3.17C w1118;UAS-GFPRNAi(9331)/regg1;ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(v107072)/regg1;ppk1.9 Gal4/+ 
	  	   w1118;UAS-E(z)RNAi(BL27993)/regg1;ppk1.9 Gal4/+ 

 

2.2 UV-induced tissue injury  

 Crosses for experiments were kept on 25°C. Early third instar larvae were selected for 

UV treatment 4~5 days after copulation. Larvae were anesthetized with ethyl ether for three 

minute, washed in water briefly, and aligned on a slide glass with double-sided tape in a 

position of dorsal side up. Then the irradiated larvae were recovered in regular fly food for 
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24 hours before nociception behavioral tests. For consistent emission of UV light, a UV 

crosslinker (Spectronics Corporation) was pre-warmed for 100 seconds in a time-mode and 

right after warming up was over, larvae were placed in the UV crosslinker and irradiated in 

an energy-mode with 20 mJ/cm2 setting. A UV photometer (Spectronics Corporation) was 

used at the same time to measure the actual administrated amount of UV each time. 

Comparison between the UV crosslinker setting and the actual reading with a UV photometer 

is shown in Table 2.2.  

 

 

Table 2.2 Comparison between set and measured UV doses 

 

2.3 Nociception behavior assay and statistics 

Thermal stimuli were applied with a custom-designed heat probe as described previously 

(36). The heat probe was set to a desired temperature and stabilized for 30 min using auto-

tune mode in advance of experiment. Larvae were washed in water briefly to remove trace of 

Set in UV crosslinker Measured in UV radiometer
 5 mJ/cm2  2-3 mJ/cm2

 8 mJ/cm2  4-5 mJ/cm2

 12 mJ/cm2

 17 mJ/cm2

 20 mJ/cm2  11-14 mJ/cm2

 8-10 mJ/cm2

 6-7 mJ/cm2
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food and placed on a black plastic pad under a Leica MZ6 light microscope. Larvae were 

stimulated on their mid-dorsal side (3rd or 4th segment from the head) for a maximum of 20 

seconds or until initiation of withdrawal behavior. Pain behavior is defined as a 360° rolling 

along anterior-posterior (AP) body axis within 20 seconds of a physical contact with the heat 

probe. The behavior latency was measured from the initial contact to the time when the 

rolling, withdrawal responses occured. Each larva was tested only once to avoid a potential 

habituation effect. Thermal allodynia was tested at 38 °C, 24 hours after UV treatment while 

baseline nociception was tested at both 45 and 48 °C in the absence of injury. The behavioral 

responses were categorized into three groups: fast (latency is up to 5 seconds), slow (latency 

is between 6 to 20 seconds), no response (no response within 20 seconds). Chi-square test 

was used to measure statistical significance in categorical data.  

 

2.4 Tissue specific induction of transgenes 

Temperature-sensitive Gal80 (Gal80ts) was used for the temporal and regional gene 

expression by repression of Gal4 transcriptional activity (149). Expression of Gal80ts is 

controlled by the tubulin promoter (tub Gal80ts) and its activity is determined by the 

temperature.  To repress Gal4, crosses were kept at the permissive temperature (18 °C) for 
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about 9 days and early 3rd instar larvae were exposed to heat-shock in 32 °C water bath for 24 

hour to repress Gal80ts and induce Gal4 expression.  

 

2.5 Immunostaining and imaging 

For the analysis of epidermal tissue damage, larvae were dissected in phosphate 

buffered saline (PBS) using fine dissection scissors, dissection forceps, and micro dissection 

pins (Fine Science Tools). Larvae were washed with water to remove food traces and were 

placed on a sylgard plate (Dow Corning Corporation) containing PBS. Then anterior and 

posterior regions of larvae were pinned down in a position of ventral side up. An incision 

was made along the AP body axis, and each side was stretched and pinned down making a 

hexagonal shape. Undesired internal tissues were removed and whole-mount epidermal tissue 

was fixed in 3.7% formaldehyde for one hour at room temperature. After fixation, tissue was 

washed with PBS and treated with a blocking solution (1% Heat-inactivated normal goat 

serum, 0.3% Triton X-100 in PBS) for one hour at room temperature.  After blocking, 

samples were incubated in primary antibody solutions at room at 4 °C for overnight. Tissue 

samples were washed 3 times in PBST (0.3% Triton X-100 in PBS) and secondary antibody 

was added. Tissue samples were incubated at 4 °C for overnight. Again samples were 

washed three times in PBST and mounted on a glass slide with Vectashield mounting media 
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(Vector Laboratories). For TUNEL staining, after secondary antibody treatment and washing, 

tissue samples were incubated in buffer (100 mM sodium citrate, 0.1% Triton X-100) for 30 

minutes at 65 °C. Tissue samples were then washed 3 times in washing buffer (50 mM Tris-

HCl (pH 6.8), 150 mM NaCl, 0.5% NP-40, 1% BSA) and incubated in TUNEL dilution 

buffer for 10 minutes at room temperature. Tissue samples were incubated in labeling 

solution for 30 minutes at 37 °C and enzyme solution was added and incubated further for 3 

hours. Finally samples were washed 3 times with washing buffer and mounted with 

vectashield mounting media. To label epidermal membranes, anti-Fasciclin III 

(Developmental studies Hybridoma Bank, 1:50) was used. Anti-Eiger antibody was used to 

label fly TNF (1:200) (72). Anti-active casapse-3 antibody (Cell signaling, 1:150) and 

Terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) staining kit (Roche) 

were used for labeling apoptotic cells. Trypan blue solution was used to label pinch wound-

induced necrosis in the epidermal cells. Anti-GFP antibody (life technologies, 1:500) was 

used to visualize induction of Eiger Gal4 expression. Secondary antibodies: alexa488-

conjugated anti-mouse (life technologies, 1:1000), Cy3-conjugated goat anti-rabbit IgG 

(Jackson ImmunoResearch, 1:1000). Images were obtained with an Olympus Fv1000 

confocal microscope and processed equally using Image J and Photoshop. 
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2.6 Purification of sensory neurons and Microarray analysis 

Class IV MD neurons were collected from control larvae (ppk 1.9 Gal4, UAS-mCD8 

GFP) and from larvae with nociceptive sensory neuron specific-activation of TNF signaling 

(ppk1.9 Gal4, UAS-mCD8 GFP, UAS-TNF). One hundred 3rd instar larvae were selected, 

washed with PBS, 70% ethanol, nuclease-free H2O, RNase-AWAY (Sigma), and nuclease-

free H2O. Larvae were chopped into 3~4 pieces on sylgard coated petri dish and transferred 

to ice-cold PBS in a microcentrifuge tube. Loosely adherent tissues such as fat body, gut, 

imaginal discs were removed by pipetting and vortexing.  To dissociate into a single cell 

suspension, pre-cleared larval tissue was ground with a pestle (Kontes Glass Tissue Grinder) 

and filtered by size using 30 µm cell strainer (Miltenyi Biotec). Magnetic beads (Dynabeads 

M-280 streptavidin, Invitrogen) coated with biotin-conjugated anti-mCD8 antibody 

(Invitrogen) solution was added to the cell suspension and incubated for one hour on ice. 

Cells expressing mCD8GFP bind the magnetic beads and then they were isolated with a 

magnetic field and following washing steps with ice-cold PBS. After checking the purity and 

the yield of isolation under a fluorescent microscope, mRNA isolation, amplification, 

labeling, hybridization, and microarray analyses were performed by Miltenyi Biotec.  250 ng 

of each of the sample cDNAs were used as template for Cy3 (control) and Cy5 (TNF/Eiger 

overexpression) labeling.  Labeled cDNAs were combined and hybridized to an Agilent 
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whole Drosophila genome oligo microarray (4x44K V2) and analyses were conducted in 

quadruplicate.  Microarray expression and bioinformatics analyses were performed as 

previously described (150). Normalized Cy5/Cy3 fold changes (Cy5/Cy3-log10 ratios) were 

used to investigate differentially expressed genes with a threshold fold change >2 and a p-

value <0.01 for genes that are up-regulated in TNF signaling-activated sensory nociceptive 

neurons relative to controls.  

 

2.7 S2 cell culture 

 S2 cells were maintained in Schneider’s medium (Gibco) supplemented with 10% 

fetal bovine serum (Gibco) and 1% penicillin/streptomysin at room temperature. Cells were 

transfected with Nextfect (Bioo scientific) or lipofectin (invitrogen) transfecting reagent. 

pMT vector was used to overexpress TNF/Eiger (74). 24 hours after transfection, 50 uM of 

CuSO4 was added to induce expression. 48 hours after transfection, medium was removed for 

UV irradiation and fresh medium was added after UV treatment. 

 

2.8 Immunoprecipitation and immunoblotting 

 S2 cells and media were separated by centrifugation.  Cells were lysed in RIPA buffer 

(25 mM Tris/HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) 
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containing protease inhibitor cocktail (Roche). Proteins in medium were concentrated using 

Vivaspin15R (Sartorius) and protease inhibitor was added. Lysate and concentrated medium 

were mixed with anti-Flag M2 affinity gel (Sigma) and incubated at 4°C overnight. The flag 

gel beads were collected by a centrifugation and washed with the RIPA buffer. The flag gel 

beads were boiled with 2X sample buffer for 5 min and supernatants were prepared for SDS-

PAGE gel running. Immunoblotting was performed using anti-Flag antibody conjugated with 

HRP (Cell signaling). Signals were detected with ECL reagents (Amersham) 
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3.1 A non-apoptotic function of the apoptosome is required for thermal allodynia 

A previous study from our lab found that RNAi-mediated knockdown of initiator 

caspase Dronc in epidermal tissue prevents both UV-induced apoptotic epidermal cell death 

and thermal allodynia, suggesting that the signaling cascade by caspases might play an 

important role during thermal allodynia as well as epidermal cell death in Drosophila larvae 

(36). My initial hypothesis derived from this work was that epidermal cell death is required 

for thermal allodynia because the prevention of epidermal cell death by knockdown of Dronc 

substantially reduced withdrawal responses of irradiated larvae.  However, it was not entirely 

clear if epidermal cell death is essential for the development of thermal allodynia. Except for 

Dronc, other components of the cell death pathway had not been tested for either UV-

induced apoptotic epidermal cell death or thermal allodynia.  

To test if upstream factors prior to the initiator caspase Dronc in the cell death 

pathway are involved in UV-induced apoptosis in the larval epidermis, I first examined 

overexpression of pro-apoptotic genes including hid, grim, and reaper (Figure 3.1). 

Epidermal overexpression of Hid caused lethality in the early L1 stage of larval development 

whereas overexpression of Grim or Reaper did not induce apoptotic cell death in the larval 

epidermis (Figure 3.1A).  To overcome lethality, temporal and local overexpression of Hid 

was induced using pannier Gal4 under the control of tubGal80ts. Controlled expression of 



 34 

 

 

Figure 3.1 Gain and Loss-of-function of pro-apoptotic genes for epidermal cell death in 

Drosophila larvae 

(A-C) Anti-Fasciclin-3 antibody (green) and anti-active caspase 3 antibody (red) were used 

to label epidermal cell membrane and apoptosis, respectively. (A) Larval epidermal staining 

shows no morphological changes with overexpression of Grim and Reaper. (B) Epidermal 

morphology when overexpression of Hid is induced by Pannier Gal4 under control of 

temperature sensitive Gal80. (C) UV-induced epidermal apoptosis 24 hours after UV 

treatment.  

* Pannel A is done by Felona Gunawan.  
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Hid resulted in morphological disruption and strong active caspase-3staining within the 

pannier Gal4-expressing patch in the larval epidermis following heat-shock treatment at 32 

°C for 24 hours whereas non-pannier expressing epidermal cells were intact (Figure 3.1B). 

This data indicates that Hid is capable of inducing apoptosis in the larval epidermis. To test 

knockdown of Hid or all three pro-apoptotic genes in UV-induced epidermal apoptosis, a 

UAS-RNAi transgene targeting Hid or UAS-microRNA transgene targeting Hid, Grim, and 

Reaper were expressed using epidermal specific Gal4 driver, e22C Gal4 (Figure 3.1C).  

Inhibition of pro-apoptotic genes in the epidermis did not block UV-induced apoptosis, 

suggesting that other signaling molecules might be involved in UV-induced epidermal 

apoptosis to activate the initiator caspase Dronc.   

Next, we tested UV-induced epidermal damage in the loss-of-function mutants of genes in 

the canonical cell death pathway and mutants of other caspases identified in the fly genome 

(Figure 3.2). The irradiated larval epidermis of control animals exhibited disrupted epidermal 

cell morphology and strong TUNEL labeling in their dorsal epidermis relative to non-

irradiated controls (Figure 3.2 A and B). Consistent with tissue-specific knockdown 

experiments (Figure 3.1), larvae homozygous for hid1 or hid1 over ED225 deficiency 

spanning the hid, grim, reaper, and sickle locus fail to block UV-induced epidermal 
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apoptosis (Figure 3.2 C and D). sickle is another pro-apoptotic gene whose gene locus is 

adjacent to hid, grim, and reaper (103).  Transheterozygous combinations of sickle1 and 

sickle3 alleles exhibited normal apoptotic cell death 24 hours after UV irradiation (Figure 

3.2E).  As expected from the previous tissue-specific knockdown experiments (36), 

homozygous null mutants for dronc did not exhibit morphologic hallmarks of apoptosis 

(Figure 3.2F). Three different transheterozygous combinations of darkG8, darkH16, and darkS7 

also failed to undergo UV-induced epidermal apoptosis (Figure 3.2 G-I), suggesting the full 

apoptosome, defined as the complex of the initiator caspase Dronc, and the Apaf-1 adaptor 

protein Dark (Figure 1.2), are required for UV-induced apoptosis in the larval epidermis.  In 

addition to Dronc, there are two more genes classified as an initiator caspase in Drosophila 

(dredd and strica) (141, 151), I tested if these initiator caspases are also involved in UV-

induced epidermal cell death. Homozygous mutants for strica and dredd displayed severe 

morphological changes and TUNEL labeling (Figure 3.2J and K), suggesting they are not 

required UV-induced epidermal cell death. Finally, we tested mutants for four different 

effector caspases for epidermal cell death in irradiated larvae. Lack of effector caspase Drice 

prevented both morphological disruption and TUNEL staining in the epidermis (Figure 

3.2L).  Homozygous mutants for Dcp-1, Decay, and Damm failed to block UV-induced 
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 Figure 3.2 Dronc and Dark, and effector caspase Drice are required for UV-induced 

epidermal apoptosis in Drosophila larvae 

24 hours after UV treatment, control or mutant larvae with the indicated allele were stained 

with anti-Fasciclin-3 antibody (green) and TUNEL staining (red) to label epidermal cell 

membrane and apoptosis, respectively.   

Control (-UV) Control (+UV)

dronc I29 dark G8H16 dark G8S7 dark S7H16

hid 1 hid 1/Df sickle 1/3

dredd EP1412

strica 4 drice у1 dcp-1 prev decay уk2 damm f02209
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apoptosis (Figure 3.2 M-O). Taken together, in the larval epidermis, dronc and Drice are the 

main initiator and effector caspase respectively.  

Next, we tested if the canonical cell death pathway and other caspases are required to 

induce thermal allodynia (Figure 3.3). Epidermal expression of UAS-RNAi or UAS-

microRNA targeting pro-apoptotic genes did not alter thermal allodynia (Figure 3.3A). 

Homozygous or heterozygous combinations of mutant alleles for hid, sickle, dredd, and 

strica, also showed normal development of thermal allodynia, suggesting that these are not 

required for either UV-induced nociceptive sensitization (Figure 3.3B). Larvae that are 

homozygous mutant for dronc or carrying three different transheterozygous allelic 

combinations for dark showed attenuated withdrawal behavior responses in comparison to 

control, suggesting that formation of the apoptosome is required for both processes, apoptotic 

cell death and thermal allodynia following UV irradiation (Figure 3.3C). By contrast, when 

we examined null mutants for all effector caspases including Drice, which very effectively 

blocks epidermal cell death, they all still showed a strong degree of thermal allodynia (Figure 

3.3B-C). This was surprising because Drice is a well-known downstream target of Dronc in 

the context of cell death (98). Although Dcp-1 single mutants were not able to block UV-

induced apoptosis in the epidermis, we examined the possibility that Drice and Dcp-1 might   
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Figure 3.3 The apoptosome but not effector caspase is required for UV-induced thermal 

allodynia 

(A-D) Quantification of UV-induced thermal allodynia at 38 °C, 24 hour post UV irradiation. 

Larval behavior was categorized as “no withdrawal” (white), “slow withdrawal” (gray, 

response between 6 and 20 s), or “fast withdrawal” (black, response ≤ 5 s) in this and other 
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figures. n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicates p value less than 0.05, 

n.s indicates no significance.  (A) Measurement of aversive withdrawal behavior when pro-

apoptotic genes are inhibited in larval epidermal cells (e22C Gal4). UAS-DIAP1 and UAS-

DroncRNAi were used as a positive control to inhibit initiator caspase Dronc. (B-C) 

Measurement of aversive withdrawal behavior of larvae homozygous or transheterozygous 

for indicated mutant alleles. w1118 was used as a control.(D) Measurement of aversive 

withdrawal behavior when initiator or effector caspases were inhibited in larval epidermis 

(A58 or e22C Gal4).  
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cooperate together to induce thermal allodynia.  However, Drice and dcp-1 double mutants 

still developed thermal allodynia, suggesting that Dronc might have different downstream 

mediators for thermal allodynia (Figure 3.3C).  

The results presented above predict that inhibiting the apoptosome should block both 

cell death and thermal allodynia whereas inhibiting effector caspases should block only cell 

death.  To test this hypothesis we expressed transgenes that target either Dronc (UAS-DIAP1) 

or Drice/Dcp-1 (UAS-p35) activity using the epidermal specific Gal4 driver, e22C-Gal4. 

Overexpression of either transgene blocked cell death but only DIAP1 inhibited development 

of thermal allodynia (Figure 3.3D), suggesting that only Dronc, but not Drice and Dcp-1, is 

required to induce thermal allodynia.   

To examine if lack of apoptosome or effector caspase function interferes with 

baseline nociception in the absence of tissue injury, we measured withdrawal behavior to a 

normally noxious stimulus of 45 °C and 48 ºC (Figure 3.4).  Larvae homozygous mutant for 

dronc displayed a mild defect in baseline nociception, raising a possibility that Dronc or the 

apoptosome is required for the normal locomotion or for the proper development of Class IV 

MD neurons. However, larvae transheterozygous for dark showed normal baseline 

nociception, suggesting reduced thermal allodynia in dark mutants is not due to the baseline 
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Figure 3.4 Baseline thermal nociception in cell death pathway genes and UV-induced 

thermal allodynia of UAS-alone control.  

 (A-D) Quantification of thermal withdrawal behavior in the absence of UV irradiation. (A-

B) Measurement of aversive withdrawal behavior of larvae expressing UAS-indicated 

transgene under control of epidermal specific driver, A58 or e22C Gal4 at 45 °C (A) or 48 °C 

(B).  Gal4 only was used as control. (C-D) Measurement of aversive withdrawal behavior of 

mutant larvae lacking indicated component of cell death pathway at 45 °C (C) or 48 °C (D).  

w1118 is used as control. (E) Quantification of UV-induced thermal allodynia of UAS-

transgene targeting indicated gene alone control at 38 °C, 24 hour post UV irradiation. 

n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicates p value less than 0.05, n.s 

indicates no statistical significance.  

.   
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defect (Figure 3.4C and D). Moreover, there were no significant differences in baseline 

nociception between control and larvae overexpressing UAS-Diap1 or UAS-p35 in the 

epidermis. (Figure 3.4A and B), supporting the idea that alterations of nociceptive 

sensitization in larvae defective for the apoptosome are not caused by the baseline 

nociception defect. Overall, these results demonstrate that Dronc has a non-apoptotic 

function in promoting thermal allodynia and this non-apoptotic function is exerted 

independently of the downstream effector caspases that Dronc usually cooperates with in 

apoptotic contexts.  Interestingly, while confirming previous results that TNF/Eiger is 

required for thermal allodynia, we noticed that this mutant is in fact haploinsufficient for 

thermal allodynia (Figure 3.3C).  Taken together, our findings indicate that apoptosis and 

thermal allodynia are genetically separable, meaning that there exist genotypes in which each 

process occurs independently of the other (Table 3.1).   

 

3.2 UV-induced thermal allodynia can be evoked below the threshold for UV-induced 

apoptosis 

As an alternative test of the question whether epidermal cell death is necessary to 

induce thermal allodynia, we examined if larvae exhibit nociceptive sensitization when 

treated with low doses of UV that do not cause overt apoptosis. To determine the lowest dose   
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Table 3.1 Genetic separation between apoptotic cell death and allodynia. 

Comparison of UV-induced cell death and thermal allodynia in larvae lacking TNF signaling, 

apoptosome, effector caspases, or other caspases. NO indicates that it is not required. YES 

indicaites that it is required for the process.  

  

Required for 

Epidermal Cell death?

Required for 

Allodynia?

Other caspases (Dcp-1, Decay, Strica) NO NO

Apoptosome (Dronc, dApaf-1, DIAP1) YES YES

Effector caspase defect (DrIce, p35) YES NO

TNF signaling NO YES
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of UV that causes apoptosis, we examined TUNEL labeling in the larval epidermis exposed 

to decreasing amounts of UV.  We found that UV doses higher than12 mJ/cm2 caused both 

morphological disruption and TUNEL staining in the epidermis, whereas doses less than 8 

mJ/cm2 do not (Figure 3.5A). As expected from a previous work, thermal allodynia 

developed in a dose-dependent manner at UV doses where overt apoptosis was observed 

(Figure 3.5B).  Interestingly, an attenuated but still substantial thermal allodynia response 

was observed even at lower UV doses (8 mJ/cm2) that did not provoke overt apoptotic cell 

death (Figure 3.5B). Although the magnitude of thermal allodynia is significantly reduced 

with UV doses of less than 12 mJ/cm2 in comparison with thermal allodynia induced by 

normally employed dose (20 mJ/ cm2), Dronc and TNF/Eiger were still required for these 

low UV doses-induced thermal allodynia (Figure 3.5C). These data first suggest that there is 

no distinct signaling mechanism that induces thermal allodynia when apoptosis is absent.  

Second, the data suggest that the signal(s) that activate nociceptive sensitization can be 

produced even in the absence of overt cell death and that Dronc can promote these signal(s) 

independently of engagement of downstream apoptotic activation. 

 

3.3 Canonical TNF/Eiger signaling factors are required for TNFR/Wengen signal 

transduction within nociceptive sensory neurons during UV-induced thermal allodynia  



 47 

  

Figure 3.5 Procedural separation of thermal allodynia from epidermal cell death.  

(A) Epidermal morphology changes and TUNEL staining of A58 Gal4/+ larvae with 

different doses of UV, 24 hour post-irradiation Anti-Fasciclin-3 antibody (membranes, green) 

and TUNEL labeling (apoptotic cells, Red) were used. (B) Dose response of UV-induced 

thermal allodynia of A58 Gal4/+ larvae at various doses of UV, 24 hour post irradiation. (C) 

UV-induced thermal allodynia when Dronc (initiator caspase) or Eiger (TNF) was inhibited, 

at 38 °C, 24 hour post UV irradiation UAS-RNAi lines are indicated. Gal4 only was used as 
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control. n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicates p value less than 0.05, 

n.s indicates no statistical significance.  
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 Our lab previously found that TNF/Eiger and its receptor TNFR/Wengen are required 

for UV-induced allodynia (36). However, that study did not resolve howthe signal from the 

epidermis is transduced in sensory neurons. To identify downstream signaling mediators of 

TNFR/Wengen during thermal allodynia, we focused on candidate downstream targets 

implicated in TNF/Eiger signaling pathway during immune and inflammatory responses (64, 

152). These included TNF receptor-associated factors (TRAFs), MAP kinases, and NF-κB 

transcription factors. We first tested nociceptive sensory neuron-specific expression of UAS-

RNAi transgenes targeting TRAF3 and TRAF6, p38a kinase and the NF-κB-like transcription 

factor Dorsal for UV-induced thermal allodynia. Expression of UAS-RNAi transgenes 

targeting all of these factors decreased thermal allodynia relative to the Gal4 driver alone and 

UAS-alone controls (Figure 3.6A and B). Importantly, sensory neuron-specific expression of 

UAS-RNAi transgene targeting Dronc did not interfere with thermal allodynia demonstrating 

that Dronc functions specifically in the epidermis during development of UV-induced 

thermal allodynia. Baseline nociception was normal with expression of UAS-RNAi transgenes 

targeting TRAF3, TRAF6, p38a kinase, and Dorsal in class IV MD neurons when tested at 

normally noxious temperature 45 °C and 48 ºC in the absence of UV treatment (Figure 3.6C 

and D). To rule out off-target effects of RNAi, we examined null mutants for traf6 and 

p38a/c and found they also show significant decreases in withdrawal behavior in comparison 



 50 

 

Figure 3.6 Canonical downstream mediators of TNF signaling are required for UV-

induced thermal allodynia 

(A-B) Quantification of UV-induced thermal allodynia, at 38 °C, 24 hour post UV 
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irradiation. (A) UAS-RNAi transgene targeting indicated genes were expressed in class IV 

MD neuron with ppk1.9 Gal4. Gal4 only was used as control. (B) UAS-RNAi transgene alone 

control. (C-D) Measurement of baseline thermal nociception of indicated genotype at 45 °C 

(C) and 48 °C (D) in the absence of UV irradiation. n = 3 sets of 30 larvae. Error bars 

represent S.E.M. * indicates p value less than 0.05, n.s indicates no statistical significance.  
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with control larvae (Figure 3.7A). Since there are three NF-κB homologs in Drosophila, we 

tested mutants of all of theirs: Dorsal, Relish, and Dif. Null mutants for dorsal and relish 

showed reduced thermal allodynia but larvae homozygous for Dif exhibited normal thermal 

allodynia (Figure 3.7A). Baseline nociception was measured in homozygous mutants for 

traf6, p38a/c, dorsal, and relish at 45 °C and 48 ºC in the absence of UV irradiation to test if 

decreased sensitization is due to the developmental defect (Figure 3.7B and C). All mutants 

for canonical downstream mediators displayed normal baseline nociception, suggesting TNF 

signaling is not required for a proper development of class IV nociceptive sensory neuron in 

Drosophila.  

Ectopic overexpression of TNF/Eiger in the class IV MD neurons is sufficient to 

cause “genetic allodynia” (36), which we define as thermal allodynia induced by genetic 

manipulations in the absence of tissue damage. Therefore, we examined if expression of 

UAS-RNAi transgenes targeting TRAF3, TRAF6, p38a kinase, and Dorsal can attenuate the 

genetic allodynia caused by TNF/Eiger overexpression. As expected, expression of UAS-

RNAi transgenes for TNFR/Wengen reduced genetic allodynia (Figure 3.8A).  Likewise, 

RNAi-mediated knockdown of TRAF3, TRAF6, p38, and Dorsal also attenuated TNF-

induced genetic thermal allodynia, suggesting these factors mediate downstream signaling 
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Figure 3.7 Mutants larvae for canonical downstream mediators of TNF signaling 

display reduced thermal allodynia.  

(A) Quantification of UV-induced thermal allodynia in homozygous mutants, at 38 °C, 24 

hour post UV irradiation. w1118  was used as a control. (B-C) Baseline thermal nociception of 

larvae homozygous for indicated mutant alleles at 45°C (B) and at 48°C (C) in the absence of 

tissue damage.  
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n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicates p value less than 0.05, n.s 

indicates no statistical significance.  
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Figure 3.8 Knockdown of Traf3 and Traf6, p38a, Dorsal, and Dronc attenuates TNF-

induced genetic thermal allodynia.  

(A) Quantification of TNF-induced genetic thermal allodynia in the absence of tissue damage 

when indicated UAS-RNAi transgene is expressed, at 38°C. UAS-TNF/+; ppk1.9 Gal4/+ 

larvae were used as control. (B) Quantification of genetic thermal allodynia induced by 

Hedgehog or Tachykinin signaling in the absence of tissue damage, with or without UAS-

RNAi transgene targeting Dronc, at 38°C. n = 3 sets of 30 larvae. Error bars represent S.E.M. 

* indicates p value less than 0.05  
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for TNF/TNFR to modulate nociceptive sensitization.  Interestingly, Dronc, which is not 

required within class IV MD neurons for UV-induced thermal allodynia (Figure 3.6A) is 

required for TNF-induced genetic thermal allodynia (Figure 3.8A). This requirement of 

Dronc in class IV sensory neurons was specific to TNF signaling, as expression of UAS-

RNAi transgenes targeting Dronc did not block Hedgehog or Tachykinin signaling-induced 

genetic thermal allodynia (49, 50) (Figure 3.8B). Taken together, our results suggest that 

Dronc may be required for some aspect of generating functional TNF.    

 

3.4 Dronc requires TNF/Eiger but not effector caspases to produce thermal allodynia 

Because epidermal Dronc is required for UV-induced thermal allodynia, we tested if 

epidermal overexpression of Dronc could cause genetic thermal allodynia in the absence of 

UV irradiation. Because activation of Dronc causes apoptotic cell death and larval lethality, I 

employed the tub-Gal80ts system to avoid developmental defects in the early larval stages 

(Figure 3.9A). Larvae were reared at a permissive temperature (18°C) and temporal 

overexpression of the relevant transgene was induced by a heat-shock at 32°C for 24 hours. 

There was no thermal allodynia in any genotype in the absence of heat-shock (Figure 3.10A). 

Conditional overexpression of Dronc by heat-shock caused strong genetic thermal allodynia   
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Figure 3.9 Overexpression of Dronc but not TNF causes epidermal cell death.  

(A) Schematic of UAS-transgene activation by heat-shock. A58-Gal4-mediated transgene 

expression was controlled by tubGal80ts. (B) Epidermal staining of the indicated genotypes. 

Anti-Fasciclin-3 antibody (membranes, green) and TUNEL labeling (apoptotic cells, red) 

were used.  
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Figure 3.10 Dronc utilizes TNF signaling to induce thermal allodynia.  

(A-B) Quantification of withdrawal responses in larvae of indicated genotype to 38 °C 

thermal stimuli in the absence of UV irradiation. tubGal80ts; A58 Gal4 only was used as 

control. (A) Larvae carrying indicated transgene were maintained at permissive temperature, 

18 °C. (B) Heat-shock induced overexpression of Dronc with or without expression of UAS-

RNAi transgene targeting TNF/Eiger and with or without the inhibitor of effector caspases, 

p35. Heat-shock was given at 32 °C for 24 hours. n = 3 sets of 30 larvae. Error bars represent 

S.E.M. * indicates p value less than 0.05, n.s indicates no statistical significance.  
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(Figure 3.10B) as well as massive apoptotic cell death in the epidermis (Figure 3.9B). UAS-

Dronc alone control did not show thermal allodynia, suggesting heat-shock alone could not 

cause thermal allodynia (Figure 3.10B). Since Dronc and TNF/Eiger are required in the same 

tissue; epidermis for UV-induced nociceptive sensitization, we hypothesized that epidermal 

Dronc activates TNF/Eiger to produce thermal allodynia.  Therefore, I examined if 

epidermal- specific inhibition of TNF/Eiger could block the genetic thermal allodynia 

induced by Dronc overexpression. A UAS-RNAi transgene targeting TNF/Eiger significantly 

attenuated Dronc-induced ectopic thermal allodynia (Figure 3.10B). By contrast, 

overexpression of the effector caspase inhibitor p35 did not alter the ectopic thermal 

allodynia induced by Dronc overexpression.  Taken together, I conclude that a non-apoptotic 

Dronc-mediated regulation or induction of TNF/Eiger is critical to induce thermal allodynia 

in Drosophila larvae.  

 

3.5 Pre-Processed TNF/Eiger does not require Dronc to induce thermal allodynia 

Previously, our lab found that TNF/Eiger is required in the epidermis for UV-induced 

thermal allodynia. However, the relative contribution(s) of potential transcriptional, 

translational, processing/secretion, or other regulatory mechanisms in regulating TNF 

activity during UV-induced thermal allodynia remained unclear. To understand how 
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TNF/Eiger is regulated in the epidermis, I first measured changes in transcription and 

translation of TNF following UV treatment. There were no detectable alterations of protein 

levels (Figure 3.11A) or transcriptional reporter (Figure 3.11B) of TNF/Eiger, suggesting that 

the regulation is not likely at the expression level, rather at the posttranslational modification 

and subcellular localization level.   

Previous studies in mammalian cells show that the ectodomain of TNF-α can be 

secreted from the membrane following proteolytic cleavage by the metalloprotease TNF- α 

converting enzyme (TACE). Therefore, processing/secretion of TNF could be required to 

activate TNF/Eiger in the epidermis following UV exposure. This hypothesis is also 

supported by the fact that TNF/Eiger and its receptor are required in different tissues, 

epidermis and class IV MD neurons respectively. Proteolytic processing of TNF/Eiger has 

been reported in S2 cells (74) and Tace, a homolog of mammalian TACE exists in fly 

genome, although it has not been validated biochemically whether Tace in Drosophila 

directly processes TNF/Eiger into soluble form. Because TNF/Eiger is required in the 

epidermis, tissue specific inhibition of Tace in the epidermis was examined for nociceptive 

sensitization after UV irradiation. Expression of UAS-RNAi targeting Tace in the epidermis 

exhibited normal development of thermal allodynia (Figure 3.12), suggesting that either 
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Figure 3.11 A TNF/Eiger transcriptional reporter and TNF/Eiger translation are not 

induced by UV irradiation.  

(A) Anti-TNF/Eiger staining of the larval epidermis and eye and wing imaginal discs (red) at 

the indicated times after UV irradiation. A58 Gal4 alone is used for non-UV treated or UV-

treated experiments. For positive control of epidermal staining, UAS-TNF/Eiger was used 

with A58 Gal4. Imaginal discs were used as controls for antibody staining. (B) Epidermal 

whole mounts in larvae bearing UAS-GFP under control of TNF/Eiger-Gal4 after UV 

irradiation (Anti-GFP, green).   
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Figure 3.12 Epidermal Tace is not required for UV-induced thermal allodynia.  

Quantification of UV-induced thermal allodynia in homozygous mutants, at 38 °C, 24 hour 

post UV irradiation, in larvae with epidermal tissue specific expressions of two independent 

UAS-RNAi transgenes targeting Tace. UAS-RNAi transgene targeting GFP was used as 

control.  n = 30 larvae. n.s indicates no statistical significance.   
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epidermal Tace is not required for thermal allodynia or RNAi is ineffective to knockdown 

Tace.  

 Given that active processing of TNF/Eiger has been reported in Drosophila S2 cells, I 

tested if UV irradiation promotes processing or secretion of TNF/Eiger in S2 cells. To find 

UV dose that does not cause apoptotic cell death, active caspase-3 staining was performed 24 

hours after irradiation at multiple UV doses and 5mJ/cm2 was selected for the next 

experiment (Figure 3.13A). As expected from a previous study in S2 cells, two different sizes 

of TNF/Eiger proteins were detected in cell lysate and media, meaning cell autonomous 

processing of TNF/Eiger occurs in the absence of any stimuli or stresses (Figure 3.13B). 

However, increased secretion of small size TNF/Eiger proteins into media was detected 30 

minutes after UV irradiation in comparison with non-irradiated control. This data suggests 

that UV treatment can trigger production of the active TNF/Eiger.  

 To test a hypothesis that processing or secretion of TNF/Eiger is induced by UV 

irradiation to mediate thermal allodynia, I examined genetic allodynia induced by 

overexpressing full-length or pre-processed soluble TNF/Eiger in the epidermis. Since 

overexpression of soluble TNF/eiger in the epidermis was lethal, the tub-Gal80ts system was 

employed again to temporally control overexpression (Figure 3.9A).  When larvae were 

raised at the permissive temperature of 18 °C, there was no thermal allodynia (Figure 3.14A).
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Figure 3.13 Secretion of soluble TNF/Eiger is constitutive and is enhanced by the UV 

irradiation in S2 cells.  

(A) Apoptotic cell death was examined at different dose of UV using anti-active caspase-3 

staining (red) in S2 cells. (B) Western blot analysis shows full-length TNF/Eiger from cell 

lysate and soluble TNF/Eiger from media with or without induction by Cu2+ or UV 

treatment.   
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Figure 3.14 Dronc activates TNF signaling by regulating active TNF ligand production.  

(A-B) Quantification of withdrawal responses in larvae of indicated genotype to 38 °C 

thermal stimuli in the absence of UV irradiation. (A) Larvae carrying indicated transgene 

were maintained at permissive temperature, 18 °C. (B) Heat-shock induced overexpression of 

full-length or soluble TNF/Egier with or without expression of UAS-RNAi transgene 

targeting Dronc. Heat-shock was given at 32 °C for 24 hours.  

n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicated p value less than 0.05. n.s 

indicates no statistical significance. 
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In the absence of UV irradiation, I found that conditional epidermal overexpression of full-

length TNF/Eiger did not cause strong genetic allodynia (Figure 3.14B). By contrast, 

conditional epidermal overexpression of a pre-processed soluble form of TNF/Eiger 

produced robust genetic thermal allodynia (Figure 3.14B). There was no apoptotic cell death 

in the epidermis upon overexpression of either full-length or soluble TNF/Eiger (Figure 

3.9B). Consistent with the idea that Dronc might be required for some aspect of TNF 

processing or trafficking rather than downstream receptor signaling, I found that epidermal 

expression of UAS-RNAi transgene targeting of Dronc could not block the genetic allodynia 

induced by soluble TNF/Eiger (Figure 3.14B), demonstrating Dronc is not acting 

downstream of the TNFR.  

 

3.6 Identification of functional downstream target genes relevant to TNF-mediated 

nociceptive sensitization 

 I showed that NF-kb transcription factor Dorsal mediates TNF signaling in class IV 

MD neurons during nociceptive sensitization. Requirement of Dorsal for TNF signaling-

mediated thermal allodynia implies that downstream target genes could be up or down 

regulated at the gene expression level to induce nociceptive sensitization. To find 

transcriptionally regulated downstream target genes upon TNF signaling activation in 
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nociceptive sensory neurons, tissue specific microarray analysis was performed in 

collaboration with the Cox lab (Neuroscience Institute, Georgia State University). 

Nociceptive sensory neurons were isolated from control larvae and genetically sensitized 

larvae that overexpress TNF/Eiger in sensory neuron (Figure 3.15A). In comparison with 

control, a total of 86 genes were modulated in TNF signaling-activated class IV MD neurons: 

50 genes were relatively up-regulated (>2 folds) while 36 genes were down-regulated (<2 

folds). 27 genes in up-regulated group and 21 genes in down-regulated group have clear 

human orthologs. Table 3.2 shows the list of up-regulated genes that have human orthologs. 

These up-regulated genes include G protein coupled receptors (GPCRs), enzymes, 

transcription factors, and ion channels (Figure 3.15B). To test whether increased expression 

of these genes contributes to nociceptive sensitization, I examined expression of UAS-RNAi 

transgenes targeting these candidate genes for both UV-induced and TNF/Eiger-induced 

thermall allodynia. I found that expression of UAS-RNAi transgenes targeting five distinct 

genes decreased both UV-induced and genetic thermal allodynia (Figure 3.16), suggesting 

that these genes are functional downstream target genes by TNF signaling in nociceptive 

sensory neurons. These five genes are garnet, Allatostatin receptor A1(AstA-R1), Trissin 

receptor (TrissinR), Enhancer of zeste (E(z)),and methuselah-like 8 (mthl8). mthl8 is a 

Drosophila specific gene whereas other four genes have human ortholog. garnet is an 
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Figure 3.15 Microarray analysis reveals downstream target gene of TNF/Eiger 

signaling.  

(A) Schematic of the isolation procedure of nociceptive sensory neurons and microarray 

analysis. (B) Categories of genes that have clear human orthologs among genes that are up-

regulated in nociceptive sensory neurons that TNF signaling pathway is genetically activated. 
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CG 

number Gene Molecular Function 

Human ortholog with 

best score Fold change 

CG31201 Glutamate receptor IIE Ion channel GRIK2 2.1630475 

CG3772 cryptochrome GPCR signaling CRY1, CRY2 4.27233 

CG1147 neuropeptide F receptor GPCR signaling NPY5R 4.200895 

CG33183 Hormone receptor-like in 46 Transcription RORB 4.195125 

CG18741 Dopamine receptor 2 GPCR signaling ADRA1B 4.4514525 

CG33344 

Cardioacceleratory peptide 

receptor GPCR signaling NPSR1 2.2945625 

CG34381 Trissin receptor GPCR signaling GPR139 3.1337875 

CG31760   GPCR signaling GPR179 2.1514775 

CG7431 Tyramine receptor GPCR signaling ADRA1D 3.85525 

CG10888 Rhodopsin 3 GPCR signaling OPN4 2.826415 

CG33513 NMDA receptor 2 Ion channel GRIN2D 2.1088125 

CG7383 eagle Transcription VDR 1.895905 

CG9918 Pyrokinin 1 receptor GPCR signaling NMUR1, NMUR2 2.5064225 

CG15744   GPCR signaling ADGRA2 2.6660225 

CG6899 Protein tyrosine phosphatase 4E Phosphatase, receptor PTPRB 1.87305 

CG2872 Allatostatin Receptor GPCR signaling GALR2 2.910375 

CG4007 Neurospecific receptor kinase 

Receptor tyrosine 

kinase MUSK 2.0737025 

CG11783 Hormone receptor-like in 96 Transcription NR1I2 3.283885 

CG34384   enymatic activity DGKH 4.6278075 

CG11111 retinal degeneration B enymatic activity PITPNM2 3.2450125 

CG2171 Triose phosphate isomerase enymatic activity TPI1 2.66855 

CG6502 Enhancer of zeste enymatic activity EZH2 2.6339075 

CG10986 garnet protein transport  AP3D1 3.28213 

CG4747   enymatic activity  GLYR1 4.1603975 

CG2155 vermilion enymatic activity TDO2 2.4186625 

CG12529 Zwischenferment enymatic activity G6PD 1.9283325 

CG6728 ninaG enymatic activity CHDH 3.8052075 

Table 3.2 List of genes that are up-regulated in the TNF/Eiger overexpressing class IV  

MD neurons. Up-regulated genes that have human ortholog are listed.   
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Figure 3.16. Behavioral validation of candidate genes from microarray reveals 

functional downstream target genes of TNF/Eiger signaling during nociceptive 

sensitization.  

(A) Quantification of UV-induced thermal allodynia (24 hour post UV irradiation) and (B) 

Quantification of TNF/Eiger-induced thermal allodynia was measured at 38 °C, when 

indicated UAS-RNAi transgene were expressed in class IV nociceptive sensory neurons, using 

ppk1.9 Gal4.  n = 3 sets of 30 larvae. Error bars represent S.E.M. * indicated p value less 

than 0.05 
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adaptor protein complex 3 for clathrin-mediated endocytosis. TrissinR, and AstA-R1 are 

GPCRs. E(z) is an epigenetic regulator. Among them, I further validated one particular gene 

of interest, E(z) by testing a non-overlapping UAS-RNAi transgenes (Figure 3.17A). Non-

overlapping UAS-RNAi transgenes targeting different regions of E(z) transcript also displayed 

attenuated thermal allodynia in both UV-induced and TNF/Eiger-induced thermall allodynia 

(Figure 3.17B), demonstrating that reduction of thermal allodynia was not due to off-target 

effect. Baseline nociception was measured with expression of UAS-RNAi transgenes 

targeting E(z) and a mild but statistically significant behavioral defect was found with 

expression of independent UAS-RNAi transgenes (Figure 3.18). Taken together, I identified a 

sensory neuron specific target gene regulated by for TNF signaling during nociceptive 

sensitization.   
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Figure 3.17. E(z) is a functional downstream target gene for TNF-mediated nociceptive 

sensitization.  

(A) Schematic of non-overlapping RNAi lines targeting E(z). (B) Quantification of UV-

induced thermal allodynia of larvae with class IV nociceptive sensory neuronal expression of 

UAS-RNAi transgenes targeting E(z), at 38 °C, 24 hour post UV irradiation. UAS-GFP RNAi 

was used as a control. (C) Quantification of TNF/Eiger-induced thermal allodynia of larvae 
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with class IV nociceptive sensory neuronal expression of UAS-TNF/Eiger and UAS-GFP 

RNAi or UAS-RNAi transgenes targeting E(z), at 38 °C in the absence of UV irradiation.n = 3 

sets of 30 larvae. Error bars represent S.E.M. * indicated p value less than 0.05.   
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Figure 3.18. Baseline thermal nociception in larvae expressing UAS-RNAi for E(z).  

(A-B) Baseline thermal nociception at 45 °C (A) and 48 °C (B) of larvae with class IV 

nociceptive sensory neuronal expression of UAS-RNAi transgenes that are indicated. n = 3 

sets of 30 larvae. Error bars represent S.E.M. * indicated p value less than 0.05. n.s indicates 

no statistical significance. 
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Chapter 4: Conclusions and Future directions 
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In the previous chapter, I have shown overall architecture of TNF signaling: ligand 

regulation, signaling mediators for receptor, a transcription factor, and target gene regulation 

during nociceptive sensitization in Drosophila larvae (Figure 3.19). Described here are 

important findings, a number of interesting questions raised by my study, and future 

directions.   

4. 1 Activation of apoptosome complex in UV irradiated epidermis 

A previous study in our lab identified initiator caspase Dronc for UV-induced 

apoptotic cell death.  Here I characterized more completely the function of the apoptosis 

machinery for the larval epidermal cell death induced by UV treatment. In addition to Dronc, 

the Apaf-1 factor Dark and downstream effector caspase Drice were essential for the larval 

epidermal apoptosis whereas other initiator or effector caspases were not required in larval 

epidermal cell death. These data suggest that the full apoptosome consists of Dronc and Dark 

activates a specific downstream effector caspase Drice in the larval epidermal cell death. It 

also indicates that the larval epidermis use classical apoptotic caspases that are commonly 

utilized by other fly tissues.  However, it still remains unclear if the larval epidermis uses 

classical upstream factors to activate epidermal Dronc and a subsequent cascade of caspases 

in the context of UV irradiation-induced cell death. In most fly tissues, the apoptosome is 

inhibited by DIAP1 in the absence of apoptotic signals. DIAP1 can be antagonized by one or   
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Figure 3.19. Current model of TNF signaling-mediated nociceptive sensitization in 

Drosophila larvae.  

1. UV irradiation induces the activation of initiator caspase Dronc. The apoptotic function of 

Dronc is required for epidermal apoptotic cell death. 2. Non-apoptotic activity of Dronc 

promotes the production of the active TNF/Eiger from the epidermis. TNF/Eiger binds its 

receptor TNFR/Wengen in class IV MD neuron, thus leading to downstream signal 

transduction. Traf3, Traf6, p38 MAP kinase, and NF-kb transcription factor Dorsal mediate 

this signal transduction, 3. which eventually increases expression level of epigenetic 

regulator, Enhancer of zest.  

Blue arrow indicates processing or secretion of TNF. Green dashed line is nuclear membrane 

of nociceptive sensory neuron.   
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combinations of pro-apoptotic genes: grim, reaper, hid, and sickle. Epidermal overexpression 

of Hid caused lethality and temporal overexpression was enough to induce epidermal 

apoptotic cell death. By contrast, overexpression of Grim and Reaper is dispensable for 

apoptotic cell death. These gain-of-function experiments suggest Hid as a strong candidate 

gene among pro-apoptotic genes for the activation of epidermal apoptosome. However, tissue 

specific knockdown of hid or homozygous hypomorphic mutant for hid did not block UV-

induced apoptotic cell death in the epidermis. The result of loss of function study could be 

due to contributions of other pro-apoptotic genes to alternate or amplify function of Hid. 

However, tissue specific knockdown of Hid, Grim, and Reaper with expression of either 

UAS-RNAi or UAS-microRNA targeting all three genes did not interfere with epidermal 

apoptosis after UV irradiation. It is still conceivable that tissue specific knockdown or 

hypomorphic allele incompletely inhibit the functional Hid, Grim, and Reaper level although 

UAS-RNAi or UAS-microRNA targeting all three genes are shown to work effectively in the 

other Drosophila tissues in previous studies (121, 146). Homozygous null mutant animals 

lacking hid or all pro-apoptotic genes are embryonic lethal limiting the investigation to 

heterozygous or hypomorphic mutants, which still show substantial apoptotic cell death in 

epidermis. In the future, a tissue specific conditional knockout of pro-apoptotic genes using 

CRISPR/Cas9-mediated conditional mutagenesis (153) would be useful to test the 
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requirement of pro-apoptotic genes for activation of Dronc and following epidermal cell 

death induced by UV irradiation in Drosophila larvae.  

Another possible scenario is that Dronc is activated by a pro-apoptotic genes-

independent mechanism for UV-induced epidermal cell death. UVC irradiation strongly 

induces instant DNA damage such as cyclobutane pyrimidine dimers, a covalent linkage 

between neighboring pyrimidine bases and can be removed by nucleotide excision repair 

(NER) (154).  In addition to the formation of pyrimidine dimers, UVC irradiation is effective 

at generating reactive oxygen species (ROS) (155). All these cellular events induced by UV 

irradiation are triggers of apoptosis. It is not known if initiator caspase Dronc can be directly 

activated by DNA damage or ROS. However, it is notable that ROS directly mediates 

caspase-9 activation via facilitating a disulfide link between caspase-9 and Apaf-1 in 

mammalian cells (156). In the future it would be interesting to test if DNA damage, members 

of the nucleotide repair machinery or generation of ROS directly contribute to the activation 

of Dronc and subsequent apoptosis. To test this hypothesis, proof-of-principle experiments 

should be performed first to test if UVC irradiation induces pyrimidine dimers or production 

of ROS in larval epidermis. The formation of pyrimidine dimers could be visualized using 

anti-thymine dimer antibody (157). A previous study showed that UVC irradiation induces 

conversion of non-fluorescent H2DCF into fluorescent 2', 7'-DCF (158) in larval epidermis 
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and muscle, suggesting production of ROS by UV irradiation (159). Therefore, it would be 

interesting to test if the UV doses that are used in my study facilitate ROS production in 

epidermis. A contributions of DNA damage or ROS to UV-induced cell death could be tested 

by epidermal knockdown of components of NER (160) or overexpression of anti-oxidant 

enzyme such as catalase (161). Finally, Dronc activity could be monitored using a genetic 

probe containing a motif that Dronc specifically recognizes and cleaves (162, 163) in the 

contexts that NER or production of ROS is blocked.  

It is particularly interesting how Dronc is activated and if identical upstream factors 

activate the dual functions of Dronc- apoptotic cell death and thermal allodynia. The 

examination of this hypothesis would provide some clues how apoptotic and nociceptive 

sensitization functions of Dronc are distinguished.  If the same upstream factors activate both 

functions of Dronc, activity levels and execution efficiencies might determines outcome of 

Dronc activation. Florentin et al. (164) showed that the levels of the pro-caspases (not yet 

activated caspases) are directly proportional to apoptotic potential. The activation of Dronc 

might also be proportional to does of UV. Thermal allodynia might be induced even if the 

activity level of Dronc is low whereas apoptotic cell death only occurs when the activity 

level of Dronc is above certain threshold. This hypothesis could be tested with differential 

activation/overexpressions of Dronc by controlling lengths of heatshock time using Gal80ts. 
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In addition, the comparison of Dronc and Drice-specific activity reporter could help to figure 

out how the activity level of Dronc is related to the activity of Drice for apoptotic cell death.  

It is also conceivable that post-translational modifications of Dronc are different for 

apoptotic cell death and thermal allodynia.  Yang et al. (165) showed that metabolic 

alterations including changes of cellular NADPH levels modulate activity of Dronc through 

phosphorylation, suggesting that post-translational modifications are important for the 

regulating activity of Dronc. Therefore, it would be interesting to test if Dronc is 

differentially modified, through phosphorylation or other potential conjugates, with low and 

high doses of UV.  

 

4. 2 Production of active TNF ligand by a non-apoptotic function of Dronc 

UV-induced nociceptive sensitization is used in various model organisms as a reliable 

model to understand mechanisms of inflammatory pain (166). UV-induced damages in the 

skin and subsequent alterations in pain are very similar in many organisms including human 

(83, 166, 167). Because damages in skin are obvious as epidermis mainly absorb UV light 

and many inflammatory cytokines are produced from epidermal tissue, epidermal damages 

are considered as a main reason of nociceptive sensitization.  However, it was unclear 

whether UV-induced cell death itself is a direct cause of nociceptive sensitization. Here I 
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found that epidermal apoptotic cell death and thermal allodynia are completely separable. 

First, there are four distinct genotypes that show genetic separation between epidermal 

apoptotic cell death and thermall allodynia. Second, thermal allodynia can be induced by a 

low dose of UV that does not cause apoptotic cell death in the epidermis. Lastly, in the 

absence of apoptotic tissue damage, it was enough to provoke thermal allodynia by genetic 

manipulation such as overexpression of TNF/Eiger and knockdown of Cactus (I kappa B), 

suggesting that cell death is unnecessary to induce nociceptive sensitization.  

Whereas cell death and nociceptive sensitization are independent, I found that the 

initiator caspase Dronc plays a critical role in induction of thermal allodynia through 

activation of TNF signaling and that this function is independent of the canonical 

downstream effector caspase, Drice. I conclude that a non-apoptotic function of Dronc 

contributes to production of active TNF/Eiger in the epidermis. This conclusion is supported 

by several lines of evidence. Because there is no clear transcriptional or translational up-

regulation of TNF/Eiger in the epidermis after UV irradiation, post-translational 

modifications including processing/secretion or increased membrane trafficking could be a 

key step to induce TNF signaling and thermal allodynia. The fact that TNF/Eiger is a 

transmembrane ligand and TNF receptor/Wengen functions in a separate tissue supports the 

conclusion that activation of TNF/Eiger pathway requires cleavage of TNF from the 
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epidermal tissue to produce soluble ligand. Indeed, overexpression of full-length or soluble 

TNF/Eiger from the epidermis produced substantially different degrees of thermal allodynia; 

the latter is much more potent than the former. Moreover, epidermal knockdown of Dronc 

attenuated full-length TNF/Eiger-induced genetic allodynia. By contrast, the function of 

Dronc was dispensable for soluble TNF/Eiger-induced genetic alldoynia, indicating 

processed form of TNF does not require Dronc. Lastly, I found that Dronc is not required in 

class IV sensory neuron for UV-induced thermal allodynia, in which context that TNF/Eiger 

is produced in the epidermal cells wherease nociceptive sensory neuronal Dronc is required 

for thermal allodynia induced by ectopic expression of TNF/Eiger in class IV nociceptive 

sensory neurons. These results imply that the requirement of Dronc for thermal allodynia is 

dependent on whether the tissue makes active TNF/Eiger, supporting my idea that production 

of active TNF requires functional Dronc. In mammals, UV irradiated keratinocytes produce 

TNFα via transcriptional up-regulation (168). However, it is not well known what regulates 

TNF secretion.  My study suggests a potential mechanism that initiator caspase might 

contribute to production of active TNF in UV-treated tissue. In addition, it would make 

initiator caspase as a strong target for inflammatory pain treatment, not simply alleviating 

tissue damage but as a reagent that inhibits release of inflammatory cytokine and signaling 

activation for nociceptive sensitization.  
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One of the questions that should be addressed in the future study is a mechanism of 

how the initiator caspase Dronc contributes to the production of active TNF/Eiger. Because 

caspase is a protease, one can imagine that Dronc directly processes TNF/Eiger for thermal 

allodynia. However, TNF/Eiger does not have the consensus sequence that caspases 

recognize and cleave.  The difference in subcellular localization of Dronc and TNF/Eiger is 

another reason to think that Dronc might not directly process TNF, although there is a 

precedent study that showed increased TNF secretion by secreted extracellular caspase (91). 

In other organisms, TNF is processed by TACE, a metalloprotease. Therefore, it is 

conceivable that Dronc activates a TNF/Eiger by activating its processing enzyme. However, 

epidermal tissue specific inhibition of Drosophila Tace with expression of UAS-RNAi 

transgenes failed to block nociceptive sensitization. This result might be due to ineffective 

knockdown although the same RNAi line was effectively used in other tissue (78). Because 

there is no available mutant allele for Tace, in the future, it would be interesting to generate 

and test mutants of Tace or other metalloproteases for thermal allodynia to find a link 

between Dronc and TNF/Eiger processing. Alternatively, it has been shown that TNF 

trafficking and secretion are regulated by exocytosis in both mammals and Drosophila (169). 

Therefore, examining exocytosis-related genes as mediators for Dronc to activate TNF 

secretion would be a potential future interest. This could be tested by measuring genetic 
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thermal allodynia together with overexpression of Dronc and inhibition of exocytosis in the 

epidermis. An experiment testing this hypothesis would be similar to those described in 

Figure 3.10.   

 

4. 3 Canonical TNF signaling mediators 

 In other studies, downstream signaling mediators of the TNF/TNFR pathway, 

including TRAF3 and p38 MAP kinase, have been implicated in nociceptive sensitization 

(28, 69, 170). However, nociceptive sensory neuron specific functions of these downstream 

mediators were unclear. Here I have shown that nociceptive sensory neuron intrinsic 

functions of Traf2, Traf6, p38a kinase, and the NF-κb factor Dorsal are important to mediate 

TNF signaling transduction and nociceptive sensitization. Of particular interests are, in the 

future, to resolve exactly how these downstream components of TNF signaling cooperate or 

interplay with each other and other pathways to induce thermal allodynia.  For example, it 

needs to be addressed whether p38a kinase directly activates NF-κb by phosphorylating IκB 

kinase or activates different downstream signaling.  

Several members of the canonical TNF signaling cascade have not yet been tested in 

our UV-induced thermal allodynia model. While Wengen was known as a sole TNF receptor 

in Drosophila, a recent study identified one more TNF receptor, Grindelwald (73), raising the 
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question of whether this novel TNFR is also required for nociceptive sensitization as 

vertebrate TNFR 1 and 2 show similar or distinct functions depending on the contexts. In 

addition, extra-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) have been 

strongly associated with TNF signal transduction (64). Therefore, it would be interesting to 

test if fly orthologs of ERK and JNK have similar functions in the context of nociceptive 

sensitization. I found that Drosophila NF-κb transcription factor, Relish (171), is also 

required for nociceptive sensitization in our model. However, it is unclear whether Relish is 

required in class IV nociceptive sensory neuron and mediates TNF signaling because 

nociceptive sensory neuronal expression of UAS-RNAi targeting Relish did not block UV-

induced thermal allodynia (data not shown). In the future, addressing tissue specificity of two 

different NF-κb factors and if they have shared target genes for mediating thermal allodynia 

would be interesting to investigate.  

 

4.4 Novel downstream target genes including E(z) 

When it comes to the role of TNF signaling in inflammatory pain, the traditional view 

has been that TNF signaling and downstream NF-kB activation induce more expression of 

inflammatory mediators to modulate neuronal activity. Nociceptive sensory neuron-specific 

microarray analysis in my study revealed that a diverse group of genes including GPCRs and 
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transcription factors are modulated by the activation of TNF signaling, indicating the 

function of TNF signaling during nociceptive sensitization is not limited to regulation of 

inflammatory mediators. In addition, it suggests that expansion of the gene expression 

profiling analysis with the activation of other signaling pathways will likely identify 

additional target genes regulating nociceptive sensitization. One of the limitations of the 

microarray analysis is that it is limited to transcriptional changes. In addition, alterations of 

gene expression are not specific for nociceptive sensitization although it is performed in class 

IV MD neurons. To increase the specificity and to narrow down candidate genes for 

behavioral analysis, the comparison of gene expressions could be performed in differentially 

sensitized class IV MD neurons by activating TNF signaling in various ways including UV 

irradiation and NF-kB activation. Another interesting question remains unclear is if the 

increased expression of these genes is due to the transcriptional activity of Dorsal. Because 

binding sequences for Dorsal is characterized (172), a combinational analysis of 

bioinformatics and biochemical experiments such as binding motif search, chromatin 

immunoprecipitation with an anti-Dorsal antibody (173) would help to test if certain 

candidate genes are targeted by Dorsal. 

Among up-regulated genes in microarray analysis, interestingly, an epigenetic 

regulator E(z) appeared as a target gene of TNF signaling during UV-induced nociceptive 
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sensitization. E(z) is a member of the polycomb group (PcG) proteins and encodes a histone 

methyltransferase enzyme that usually modifies H3K27 (174). A well-known function of 

PcG proteins is in the maintenance of the identity of a cell by creating repressive chromatin 

environment. Thus many PcG proteins are involved in development and carcinogenesis. 

However, their roles in nociceptive biology are completely unknown. Therefore, in the future, 

it would be important to test if E(z) is a target gene of TNF signaling and plays a key role in 

nociceptive sensitization in vertebrate system. Interestingly, the human ortholog of E(z), 

EZH2 has been implicated as a target of TNF signaling in skeletal myogenesis (175), 

indicating that E(z) can be modulated by TNF signaling in some context. In addition, the 

examination of other members of polycomb group protein would be interesting to find if E(z) 

has an independent function or has a role within a classically defined complex.     

How does epigenetic regulation contribute to nociceptive sensitization? In recent 

studies, epigenetic regulations including histone acetylation have been implicated in 

nociceptive sensitization. For example, nociceptive sensory neuron specific conditional 

knockout mouse lacking histone deacetylase HDAC4 displayed decreased thermal 

sensitization while baseline nociception was normal (176). Also, HDAC4 knockout mouse 

showed reduced TRPV1 expression, suggesting that the expression of ion channels for 

noxious stimuli detection could be regulated by alteration of chromatin environment. 
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Because E(z) creates a more repressed chromatin environment, the function of E(z) during 

nociceptive sensitization might be inhibiting expression of negative regulators for 

sensitization. Identification of mechanisms and target genes regulated by E(z) will likely help 

to understand unexpected role of TNF signal transduction and relationship between 

chromatin environment and nociceptive sensitization.  
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Appendix 

 Different modes of tissue damage might employee distinct molecular mechanisms to 

induce nociceptive sensitization. Previous studies in the lab established pinch wound-induced 

nociceptive sensitization using Drosophila larvae.  In this model, pinch wound creates a gap 

by removing epidermal cells as well as damaging underlying nociceptive sensory neurons. 

Damaged area for pinch wound is much smaller than one by UV irradiation on whole dorsal 

midline epidermis. In addition, epidermal and neuronal damage by pinching do not cause 

apoptotic cell death because active caspase-3 staining is absent (Figure A1A). Instead, pinch 

wounding creates necrotic cell death as the damaged area showed positive trypan blue 

staining (Figure A1B). Both pinch wound-induced and UV irradiation-induced tissue 

damages cause thermal allodynia but their onset and duration are different. Pinch wound-

induced allodynia response peaks around 4 to 8 hours and decreases around 16 hours after 

pinching whereas UV-induced allodynia shows a maximum response at 24 hours and 

disappears 48 hours after irradiation (Figure A1C). To test whether these difference come 

from employing different signaling pathways to activate nociceptive sensory neurons, we 

examined signaling pathways identified in UV-induced allodynia, such as Dronc, TNF, and 

Hh signaling for pinch wound-induced allodynia. Consistent with our hypothesis that 
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different modes of damage activate distinctive signaling pathways, knockdown of three 

signaling pathways did not block pinch  
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Figure A1. Pinch wound-induced allodynia differs from UV-induced allodynia in 

Drosophila. 

(A) Epidermal morphology and apoptotic cell death after pinch wound. Anti-Fasciclin-3 

antibody (membranes, green) and anti-active caspase 3 antibody (apoptotic cells, red) were 

used. (B) Necrotic cell death after pinch wound. Trypan blue dye was used to label necrotic 

cells (blue). (C) Quantification of pinch wound-induced thermal allodynia at different time 

point after pinch-wound, at 38 °C. 
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wound-induced allodynia (Figure A2A and B). In addition, a signaling pathway for wound 

repair is not involved in pinch wound-induced allodynia.  Inhibition of JNK did not block 

both initiation and cessation of pinch wound-induced thermal allodynia (Figure A2C) 

although wound is not healed due to lack of JNK signaling (134). Moreover, eliminating 

hemocytes did not help to reduce pinch wound-induced allodynia (Figure A2D) while pinch 

wound instantly attract them into the wounded area (177), suggesting hemocytes do not 

contribute to nociceptive sensitization in this model.     
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Figure A2. Distinct signaling pathways are required for pinch wound-induced allodynia 

in Drosophila. 

(A-D) Quantification of pinch wound-induced thermal allodynia at 38 °C. (A-B) Epidermal 

or class IV MD neuronal expression of UAS-RNAi transgene targeting TNF/Eiger or Dronc 

were induced using A58 Gal4 or ppk1.9 Gal4. Thermal allodynia was measured 4 hour post 

pinch-wound. (C) Epidermal expression of UAS-RNAi transgene targeting JNK was induced 
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using A58 Gal4. Thermal allodynia was measured 4 or 24 hour post pinch-wound. (D) 

Hemocyte were eliminated by overexpression of pro-apoptotic gene Hid using hemocyte 

specific Hml Gal4. Thermal allodynia was measured 4 hour post pinch-wound. 

 n ≥ 30 larvae.  
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