54 research outputs found

    In Vivo Delta Opioid Receptor Internalization Controls Behavioral Effects of Agonists

    Get PDF
    GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs

    The Antidepressant -like Effects of Delta-Opioid Receptor Agonists

    No full text

    Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test amd regulate BDNF mRNA expression in rats.

    No full text
    Systemically active, nonpeptidic delta opioid receptor agonists have been shown to produce antidepressant and anxiolytic effects in animal models in rodents. In addition, delta agonists have been shown to increase expression of brain-derived neurotrophic factor (BDNF) mRNA, an effect of some antidepressants, which may be important for the clinical efficacy of antidepressant drugs. The present study examined whether a variety of peptidic delta agonists, DPDPE, JOM-13, a systemically active derivative of DPDPE, deltorphin II, and H-Dmt-Tic-NH-CH2-Bid could produce convulsions and antidepressant-like effects in the forced swim test. In addition, some of these compounds were examined for their influence on BDNF mRNA expression. All four agonists dose-dependently decreased immobility in the forced swim test, indicating an antidepressant-like effect. Only JOM-13 produced convulsions at doses required for antidepressant-like effects. In addition, DPDPE increased BDNF mRNA expression, as measured by in situ hybridization, in the frontal cortex. The antidepressant-like effect of the agonists in the forced swim test and the increase in BDNF mRNA expression produced by DPDPE were blocked by the delta antagonist naltrindole. Therefore, activation of the delta receptor by centrally administered peptidic agonists and intravenously administered JOM-13 produces behavioral antidepressant-like effects without producing convulsions, and some peptidic agonists can increase BDNF mRNA expression, however, not as consistently as the systemically active nonpeptidic agonists

    Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test amd regulate BDNF mRNA expression in rats

    No full text
    Systemically active, nonpeptidic delta opioid receptor agonists have been shown to produce antidepressant and anxiolytic effects in animal models in rodents. In addition, delta agonists have been shown to increase expression of brain-derived neurotrophic factor (BDNF) mRNA, an effect of some antidepressants, which may be important for the clinical efficacy of antidepressant drugs. The present study examined whether a variety of peptidic delta agonists, DPDPE, JOM-13, a systemically active derivative of DPDPE, deltorphin II, and H-Dmt-Tic-NH-CH2-Bid could produce convulsions and antidepressant-like effects in the forced swim test. In addition, some of these compounds were examined for their influence on BDNF mRNA expression. All four agonists dose-dependently decreased immobility in the forced swim test, indicating an antidepressant-like effect. Only JOM-13 produced convulsions at doses required for antidepressant-like effects. In addition, DPDPE increased BDNF mRNA expression, as measured by in situ hybridization, in the frontal cortex. The antidepressant-like effect of the agonists in the forced swim test and the increase in BDNF mRNA expression produced by DPDPE were blocked by the delta antagonist naltrindole. Therefore, activation of the delta receptor by centrally administered peptidic agonists and intravenously administered JOM-13 produces behavioral antidepressant-like effects without producing convulsions, and some peptidic agonists can increase BDNF mRNA expression, however, not as consistently as the systemically active nonpeptidic agonists

    The δ-Opioid Receptor Agonist SNC80 [(+)-4-[α( R

    No full text

    Convulsant activity of a non-peptidic δ-opioid receptor agonist is not required for its antidepressant-like effects in Sprague-Dawley rats

    Full text link
    AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41982/1/s00213-002-1179-y.pd
    • …
    corecore