63 research outputs found

    Platelet Counts and Platelet Activation Markers in Obese Subjects

    Get PDF
    Objective. In this work we studied the correlation between platelet count, platelet activation, and systemic inflammation in overweight, obese, and morbidly obese individuals. Methods and subjects. A total of 6319 individuals participated in the study. Complete blood counts, high sensitivity C-reactive protein (hs-CRP) serum levels, and body mass index (BMI) were measured during routine checkups. Platelet activation markers were studied among 30 obese (BMI = 41 ± 8 kg/m2) and 35 nonobese (BMI = 24 ± 3 kg/m2) individuals. Platelet activation status was evaluated by flow cytometry using specific antibodies against the activated platelet membrane glycoprotein IIb/IIIa, p-selectin (CD-62 p), and binding of Annexin-V to platelet anionic phospholipids. Results. Overweight, obese, and morbidly obese females had significantly elevated platelet counts ( P < .0001) compared with normal-weight females. No significant elevation of platelet counts was observed in the male subgroups. A significant age adjusted correlation between BMI and platelet counts ( P < .0001) was found among females. This correlation was attenuated (P = .001) after adjustment for hs-CRP concentrations. The flow cytometry analysis of platelets showed no significant differences in activation marker expression between nonobese and obese individuals. Discussion. Obesity may be associated with elevated platelet counts in females with chronic inflammation. Obesity is not associated with increased platelet activation

    C-reactive protein serum levels as an early predictor of outcome in patients with pandemic H1N1 influenza A virus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data for predicting which patients with pandemic influenza A (H1N1) infection are likely to run a complicated course are sparse. We retrospectively studied whether the admission serum C-reactive protein (CRP) levels can serve as a predictor of illness severity.</p> <p>Methods</p> <p>Included were all consecutive adult patients who presented to the emergency department (ED) between May-December, 2009 with a flu-like illness, a confirmed diagnosis of pandemic influenza A (H1N1) infection and a serum CRP level measured within 24 hours of presentation. Patients with a proven additional concurrent acute illness (e.g., bacteremia) were excluded. We used the ROC curve analysis, Kaplan-Meier curves and the Cox proportional hazard model to evaluate the predictive ability of CRP as a prognostic factor.</p> <p>Results</p> <p>Seventeen (9%) of the 191 enrolled patients were admitted to the intensive care unit (ICU), of whom eight (4%) required mechanical ventilation and three (2%) died. The median admission serum CRP levels were significantly higher among patients who required subsequent ICU care and mechanical ventilation than among patients who did not (123 mg/L and 112 mg/L vs. 40 mg/L, <it>p </it>< .001 and 43 mg/L, <it>p </it>= .017, respectively). A Cox proportional hazard model identified admission serum CRP levels and auscultatory findings over the lungs as independent prognostic factors for ICU admission. Admission serum CRP levels were the only independent prognostic factor for mechanical ventilation. Thirty days after presenting to the ED, none of the patients with admission serum CRP level <28 mg/L (lower tertile) required either ICU admission or mechanical ventilation. At the same time point, 19% of the patients with admission serum CRP level ≥70 mg/L (upper tertile) needed to be admitted to the ICU and 8% of the same upper tertile group required mechanical ventilation. The differences in the rates between the lower vs. upper tertile groups were significant (Log-Rank <it>p </it>< .001 for ICU and <it>p </it>< .024 for mechanical ventilation).</p> <p>Conclusions</p> <p>In our study group, serum CRP levels obtained in the early ED admission stage from patients presenting with pandemic H1N1 influenza A infection were found to serve as a useful gauge for predicting disease course and assisting in patient management.</p

    Prediction of Fluoroquinolone Resistance in Gram-Negative Bacteria Causing Bloodstream Infections

    Get PDF
    Increasing rates of fluoroquinolone resistance (FQ-R) have limited empirical treatment options for Gram-negative infections, particularly in patients with severe beta-lactam allergy. This case-control study aims to develop a clinical risk score to predict the probability of FQ-R in Gram-negative bloodstream isolates. Adult patients with Gram-negative bloodstream infections (BSI) hospitalized at Palmetto Health System in Columbia, South Carolina, from 2010 to 2013 were identified. Multivariate logistic regression was used to identify independent risk factors for FQ-R. Point allocation in the fluoroquinolone resistance score (FQRS) was based on regression coefficients. Model discrimination was assessed by the area under receiver operating characteristic curve (AUC). Among 824 patients with Gram-negative BSI, 143 (17%) had BSI due to fluoroquinolone-nonsusceptible Gram-negative bacilli. Independent risk factors for FQ-R and point allocation in FQRS included male sex (adjusted odds ratio [aOR], 1.97; 95% confidence intervals [CI], 1.36 to 2.98; 1 point), diabetes mellitus (aOR, 1.54; 95% CI, 1.03 to 2.28; 1 point), residence at a skilled nursing facility (aOR, 2.28; 95% CI, 1.42 to 3.63; 2 points), outpatient procedure within 30 days (aOR, 3.68; 95% CI, 1.96 to 6.78; 3 points), prior fluoroquinolone use within 90 days (aOR, 7.87; 95% CI, 4.53 to 13.74; 5 points), or prior fluoroquinolone use within 91 to 180 days of BSI (aOR, 2.77; 95% CI, 1.17 to 6.16; 3 points). The AUC for both final logistic regression and FQRS models was 0.73. Patients with an FQRS of 0, 3, 5, or 8 had predicted probabilities of FQ-R of 6%, 22%, 39%, or 69%, respectively. The estimation of patient-specific risk of antimicrobial resistance using FQRS may improve empirical antimicrobial therapy and fluoroquinolone utilization in Gram-negative BSI

    The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.

    Full text link
    peer reviewedThe Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
    corecore