435 research outputs found

    Moisture and Temperature Effects on Interface Mechanical Properties for External Bonding

    Get PDF
    In order to develop rational guidelines for strengthening by external bonding, it is necessary to clarify longterm performance of interfacial bonding property. In this paper, moisture effects on bonding properties at FRP–concrete interface and temperature/moisture effects on bonding properties at PCM–concrete interface are presented. Shear bond strength of FRP–concrete interface is affected by moisture because resin–concrete adhesion strength is affected by moisture. Among tested CFRP external bonding systems, wet-layup CFRP systems all show the strength reduction, while prefabricated CFRP systems all show the strength increase after immersion. The bond stress–slip relationship and interfacial fracture energy also change, which can explain the change in shear bond strength. The reduction in shear bond strength does not show clear dependency on resin strength/stiffness reduction. The observed big variation in shear bond strengths reported in past studies can be explained by difference in interface roughness, since chemical bond is affected by moisture but mechanical bond is not. Tension/shear bond strength of PCM–concrete interface is affected significantly by temperature but less by moisture. The tensile/shear bond strength is less than tensile/shear strength of constituent materials (PCM and concrete). The reduction in tension/shear bond strength depends on the reduction in tensile/shear strengths of PCM and concrete and then estimated by proposed equation which is a function of PCM and concrete strength. The ultimate loads of beams strengthened by PCM overlay can be predicted by the proposed model in which the proposed tensile/shear bond strength is applied. Under high temperature, the failure mode can be changed from flexure/shear failure to debonding failure due to the reduction in shear bond strength

    Making Synchronous BFT Protocols Secure in the Presence of Mobile Sluggish Faults

    Get PDF
    BFT protocols in the synchronous setting rely on a strong assumption: every message sent by a party will arrive at its destination within a known bounded time. To allow some degree of asynchrony while still tolerating a minority corruption, recently, in Crypto\u2719, a weaker synchrony assumption called mobile sluggish faults was introduced. In this work, we investigate the support for mobile sluggish faults in existing synchronous protocols such as Dfinity, Streamlet, Sync HotStuff, OptSync and the optimal latency BFT protocol. We identify key principles that can be used to ``compile\u27\u27 these synchronous protocols to tolerate mobile sluggish faults

    Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile Virus infection

    Get PDF
    Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2(mu/mu)) in several Irf5(−/−) mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5(−/−) × Dock2(wt/wt) mice (here called Irf5(−/−) mice) and independently generated CMV-Cre Irf5(fl/fl) mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5(−/−) and CMV-Cre Irf5(fl/fl) mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5(−/−) mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5(−/−) mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. IMPORTANCE Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5(−/−) mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of Irf5(−/−) mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection

    Bis(\u3cem\u3eN\u3c/em\u3e-amidinohydrazones) and \u3cem\u3eN\u3c/em\u3e-(amidino)-\u3cem\u3eN\u3c/em\u3e\u27-aryl-bishydrazones: New Classes of Antibacterial/Antifungal Agents

    Get PDF
    The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicr obial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step, resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from \u3c 0.5- \u3e 500 μM against bacteria and 1.0- \u3e 31.3 μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12-3.29 μM. Overall, these studies sh ow that bis(N-amidinohydrazones) and N-(amidino)-N\u27-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents

    Hepatic Hydrothorax without Any Evidence of Ascites

    Get PDF
    Hepatic hydrothorax usually presents in association with ascites, but there are rare cases when it does not. This case helps to support the differential of hepatic hydrothorax in patients who have a history of liver cirrhosis, portal hypertension, and recurrent pleural effusions without ascites. We hope to support the conclusion that a patient with recurrent pleural effusions, without ascites, does not exclude gastrointestinal involvement in its etiology

    Plant Power:Opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms

    Get PDF
    Societal Impact Statement Bioenergy is a major component of the global transition to renewable energy technologies. The plant and fungal kingdoms offer great potential but remain mostly untapped. Their increased use could contribute to the renewable energy transition and addressing the United Nations Sustainable Development Goal 7 “Ensure access to affordable, reliable, sustainable and modern energy for all.” Current research focuses on species cultivated at scale in temperate regions, overlooking the wealth of potential new sources of small‐scale energy where they are most urgently needed. A shift towards diversified, accessible bioenergy technologies will help to mitigate and adapt to the threats of climate change, decrease energy poverty, improve human health by reducing indoor pollution, increase energy resilience of communities, and decrease greenhouse gas emissions from fossil fuels. Summary Bioenergy derived from plants and fungi is a major component of the global transition to renewable energy technologies. There is rich untapped diversity in the plant and fungal kingdoms that offers potential to contribute to the shift away from fossil fuels and to address the United Nations Sustainable Development Goal 7 (SDG7) “Ensure access to affordable, reliable, sustainable and modern energy for all.” Energy poverty—the lack of access to modern energy services—is most acute in the Global South where biodiversity is greatest and least investigated. Our systematic review of the literature over the last 5 years (2015–2020) indicates that research efforts have targeted a very small number of plant species cultivated at scale, mostly in temperate regions. The wealth of potential new sources of bioenergy in biodiverse regions, where the implementation of SDG7 is most urgently needed, has been largely overlooked. We recommend next steps for bioenergy stakeholders—research, industry, and government—to seize opportunities for innovation to alleviate energy poverty while protecting biodiversity. Small‐scale energy production using native plant species in bioenergy landscapes overcomes many pitfalls associated with bioenergy crop monocultures, such as biodiversity loss and conflict with food production. Targeted trait‐based screening of plant species and biological screening of fungi are required to characterize the potential of this resource. The benefits of diversified, accessible bioenergy go beyond the immediate urgency of energy poverty as more diverse agricultural landscapes are more resilient, store more carbon, and could also reduce the drivers of the climate and environmental emergencies

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    Leveraging Rural Energy Investment for Parasitic Disease Control: Schistosome Ova Inactivation and Energy Co-Benefits of Anaerobic Digesters in Rural China

    Get PDF
    Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste) has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. ova) counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased by 68%, wood by 74%, and crop waste by 6%. With reported energy savings valued at roughly 600 CNY per year, 2–3 years were required to recoup the capital costs of biogas systems. In villages without subsidies, no new biogas systems were implemented.Sustainable strategies that integrate rural energy needs and sanitation offer tremendous promise for long-term control of parasitic diseases, while simultaneously reducing energy costs and improving quality of life. Government policies can enhance the financial viability of such strategies by introducing fiscal incentives for joint sanitation/sustainable energy projects, along with their associated public outreach and education programs
    corecore