864 research outputs found
Quantum Interference Enhancement of the Spin-Dependent Thermoelectric Response
We investigate the influence of quantum interference (QI) and broken spin-symmetry on the thermoelectric response of node-possessing junctions, finding a dramatic enhancement of the spin-thermopower (Ss), figure-of-merit (ZsT), and maximum thermodynamic efficiency (ηsmax) caused by destructive QI. Using many-body and single-particle methods, we calculate the response of 1,3-benzenedithiol and cross-conjugated molecule-based junctions subject to an applied magnetic field, finding nearly universal behavior over a range of junction parameters with Ss, ZsT, and reaching peak values of 2/ â3(/)2/3(/), 1.51, and 28% of Carnot efficiency, respectively. We also find that the quantum-enhanced spin-response is spectrally broad, and the field required to achieve peak efficiency scales with temperature. The influence of off-resonant thermal channels (e.g., phonon heat transport) on this effect is also investigated
The Hymenoptera Genome Database
The Hymenoptera Genome Database (HGD) is an informatics resource supporting genomics of hymenopteran insect species. This relational database implements open-source software and components providing access to curated data contributed by an extensive, active research community. HGD includes the genome sequences and annotation data of honey bee _Apis mellifera_ and its pathogens ("http://BeeBase.org":BeeBase.org) the parasitoid wasp _Nasonia vitripennis_ ("http://NasoniaBase.org":NasoniaBase.org) and a portal to the genomes of six species of ants. Together, these species cover approximately 200 MY in the phylogeny of Hymenoptera, allowing to leverage genetic, genome sequence, and gene expression data, as well as the biological knowledge of related model organisms. The availability of resources across an order greatly facilitates comparative genomics and enhances our understanding of the biology of agriculturally important Hymenoptera species through genomics. HGD has supported research contributions from an extensive community from almost 80 institutions in 14 countries. Community annotation efforts are made possible thanks to a remote connection to a Chado database by Apollo Genome Annotation client software. Curated data at HGD includes predicted and annotated gene sets supported with evidence tracks such as ESTs/cDNAs, small RNA sequences and GC composition domains. Data at HGD can be queried using genome browsers and / or BLAST/PSI-BLAST servers, and it may also be downloaded to perform local searches. We encourage the public to access and contribute data to HGD at "http://HymenopteraGenome.org":HymenopteraGenome.org.

This poster contains material included in an article accepted for publication in Nucl. Acids Res.©: 2011. The Database Issue. Published by Oxford University Press
Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey
The rotational spectrum of the higher-energy trans conformational isomer of
methyl formate has been assigned for the first time using several pulsed-jet
Fourier transform microwave spectrometers in the 6-60 GHz frequency range. This
species has also been sought toward the Sagittarius B2(N) molecular cloud using
the publicly available PRIMOS survey from the Green Bank Telescope. We detect
seven absorption features in the survey that coincide with laboratory
transitions of trans-methyl formate, from which we derive a column density of
3.1 (+2.6, -1.2) \times 10^13 cm-2 and a rotational temperature of 7.6 \pm 1.5
K. This excitation temperature is significantly lower than that of the more
stable cis conformer in the same source but is consistent with that of other
complex molecular species recently detected in Sgr B2(N). The difference in the
rotational temperatures of the two conformers suggests that they have different
spatial distributions in this source. As the abundance of trans-methyl formate
is far higher than would be expected if the cis and trans conformers are in
thermodynamic equilibrium, processes that could preferentially form
trans-methyl formate in this region are discussed. We also discuss measurements
that could be performed to make this detection more certain. This manuscript
demonstrates how publicly available broadband radio astronomical surveys of
chemically rich molecular clouds can be used in conjunction with laboratory
rotational spectroscopy to search for new molecules in the interstellar medium.Comment: 40 pages, 7 figures, 4 tables; accepted for publication in Ap
Continuity or change in business representation in Britain? An assessment of the Heseltine initiatives of the 1990s
Britain has a fragmented, overlapping, and underresourced system of business representation. Attempts at reform, however, have proved difficult and largely unsuccessful. A coherent and logical system is relevant, in terms of both an effective dialogue between government and business, and the promotion of competitiveness and productivity. Through interviews and archival evidence, I look at how government has attempted to reform business associations. The main focus is the Heseltine initiatives of the 1990s: I outline the various initiatives taken, reveal the extent to which policy represented continuity or change, and consider whether the initiatives were effective. I show that they had a degree of success but that they would have made greater impact if they had been sustained over a longer period of time. A consideration of the historical context, moreover, suggests there may be limits to the role of government intervention in business association reform
The statistical properties of solar wind temperature parameters near 1 AU
We present a long-duration (10 years) statistical analysis of the
temperatures, plasma betas, and temperature ratios for the electron, proton,
and alpha-particle populations observed by the \emph{Wind} spacecraft near 1
AU. The mean(median) scalar temperatures are
12.2(11.9) eV, 12.7(8.6) eV, and
23.9(10.8) eV. The mean(median) total
plasma betas are 2.31(1.09),
1.79(1.05), and 0.17(0.05). The mean(median) temperature ratios are
1.64(1.27),
1.24(0.82), and
2.50(1.94). We also examined these parameters during time intervals that
exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs)
of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs.
The only times that show significant alterations to any of the parameters
examined are those during MOs. In fact, the only parameter that does not show a
significant change during MOs is the electron temperature. Although each
parameter shows a broad range of values, the vast majority are near the median.
We also compute particle-particle collision rates and compare to effective
wave-particle collision rates. We find that, for reasonable assumptions of wave
amplitude and occurrence rates, the effect of wave-particle interactions on the
plasma is equal to or greater than the effect of Coulomb collisions. Thus,
wave-particle interactions should not be neglected when modeling the solar
wind.Comment: 23 pages, 3 figures, 6 tables, submitted to Astrophys. J. Suppl. on
Jan. 30, 201
A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date
It has recently been discovered that some, if not all, classical novae emit
GeV gamma rays during outburst, but the mechanisms involved in the production
of the gamma rays are still not well understood. We present here a
comprehensive multi-wavelength dataset---from radio to X-rays---for the most
gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we
show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta
velocity of 2600 km s and an ejecta mass of few
M. There is also evidence for complex shock interactions, including a
double-peaked radio light curve which shows high brightness temperatures at
early times. To explore why V1324~Sco was so gamma-ray luminous, we present a
model of the nova ejecta featuring strong internal shocks, and find that higher
gamma-ray luminosities result from higher ejecta velocities and/or mass-loss
rates. Comparison of V1324~Sco with other gamma-ray detected novae does not
show clear signatures of either, and we conclude that a larger sample of
similarly well-observed novae is needed to understand the origin and variation
of gamma rays in novae.Comment: 26 pages, 13 figure
Advances in perturbative thermal field theory
The progress of the last decade in perturbative quantum field theory at high
temperature and density made possible by the use of effective field theories
and hard-thermal/dense-loop resummations in ultrarelativistic gauge theories is
reviewed. The relevant methods are discussed in field theoretical models from
simple scalar theories to non-Abelian gauge theories including gravity. In the
simpler models, the aim is to give a pedagogical account of some of the
relevant problems and their resolution, while in the more complicated but also
more interesting models such as quantum chromodynamics, a summary of the
results obtained so far are given together with references to a few most recent
developments and open problems.Comment: 84 pages, 18 figues, review article submitted to Reports on Progress
in Physics; v2, v3: minor additions and corrections, more reference
Direct determination of cellulosic glucan content in starch-containing samples
A simple and highly selective analytical procedure is presented for the determination of cellulosic glucan content in samples that contain both cellulose and starch. This method eliminates the unacceptably large compounding errors of current two-measurement methods. If both starch and cellulose are present before analytical hydrolysis, both will be hydrolyzed to glucose causing bias and inaccuracy in the method. To prevent this interference, the removal of starch prior to cellulosic quantification is crucial. The method presented here is a concise in-series procedure with minimal measurements, eliminating large compounding errors. Sample preparation consists of a starch extraction employing enzymatic hydrolysis followed by a simple filtration and wash. The samples are then subjected to a two-stage acid hydrolysis. The concentration of glucose is determined by ion exchange high-performance liquid chromatography with a Pb2+ column and a refractive index detector. The cellulosic glucan content is calculated based on the initial dry weight of the starting material. Data for the native biomass materials studied show excellent reproducibility, with coefficients of variance of 3.0% or less associated with the method. This selectivity for cellulosic glucan by the procedure was validated with several analytical techniques such as liquid chromatography coupled with mass spectrometry (LCâMS), Raman spectroscopy, and nuclear magnetic resonance
Quantum teleportation on a photonic chip
Quantum teleportation is a fundamental concept in quantum physics which now
finds important applications at the heart of quantum technology including
quantum relays, quantum repeaters and linear optics quantum computing (LOQC).
Photonic implementations have largely focussed on achieving long distance
teleportation due to its suitability for decoherence-free communication.
Teleportation also plays a vital role in the scalability of photonic quantum
computing, for which large linear optical networks will likely require an
integrated architecture. Here we report the first demonstration of quantum
teleportation in which all key parts - entanglement preparation, Bell-state
analysis and quantum state tomography - are performed on a reconfigurable
integrated photonic chip. We also show that a novel element-wise
characterisation method is critical to mitigate component errors, a key
technique which will become increasingly important as integrated circuits reach
higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted
manuscript; Nature Photonics (2014
- âŠ