1,973 research outputs found

    Parallel Regulation of Memory and Emotion Supports the Suppression of Intrusive Memories.

    Get PDF
    Intrusive memories often take the form of distressing images that emerge into a person's awareness, unbidden. A fundamental goal of clinical neuroscience is to understand the mechanisms allowing people to control these memory intrusions and reduce their emotional impact. Mnemonic control engages a right frontoparietal network that interrupts episodic retrieval by modulating hippocampal activity; less is known, however, about how this mechanism contributes to affect regulation. Here we report evidence in humans (males and females) that stopping episodic retrieval to suppress an unpleasant image triggers parallel inhibition of mnemonic and emotional content. Using fMRI, we found that regulation of both mnemonic and emotional content was driven by a shared frontoparietal inhibitory network and was predicted by a common profile of medial temporal lobe downregulation involving the anterior hippocampus and the amygdala. Critically, effective connectivity analysis confirmed that reduced amygdala activity was not merely an indirect consequence of hippocampal suppression; rather, both the hippocampus and the amygdala were targeted by a top-down inhibitory control signal originating from the dorsolateral prefrontal cortex. This negative coupling was greater when unwanted memories intruded into awareness and needed to be purged. Together, these findings support the broad principle that retrieval suppression is achieved by regulating hippocampal processes in tandem with domain-specific brain regions involved in reinstating specific content, in an activity-dependent fashion.SIGNIFICANCE STATEMENT Upsetting events sometimes trigger intrusive images that cause distress and that may contribute to psychiatric disorders. People often respond to intrusions by suppressing their retrieval, excluding them from awareness. Here we examined whether suppressing aversive images might also alter emotional responses to them, and the mechanisms underlying such changes. We found that the better people were at suppressing intrusions, the more it reduced their emotional responses to suppressed images. These dual effects on memory and emotion originated from a common right prefrontal cortical mechanism that downregulated the hippocampus and amygdala in parallel. Thus, suppressing intrusions affected emotional content. Importantly, participants who did not suppress intrusions well showed increased negative affect, suggesting that suppression deficits render people vulnerable to psychiatric disorders

    Application of Structured Decision Making to Wildlife Management in Montana

    Get PDF
    Good decision-making is essential to conserving wildlife populations. Whereas there may be multiple ways to address a problem, perfect solutions rarely exist. Managers are therefore tasked with identifying optimal decisions that will best achieve desired outcomes. Structured decision making (SDM) is a method of decision analysis used to identify the most effective, efficient, and realistic optimal decisions while accounting for values and priorities of the decision maker. The stepwise process includes identifying the management problem, defining objectives for solving the problem, developing alternative approaches to achieve the objectives, and formally evaluating which alternative is most likely to accomplish the objectives. The SDM process can be more effective than informal decision-making because it provides a transparent way to quantitatively evaluate decisions for addressing multiple management objectives while incorporating science, uncertainty, and risk tolerance. We illustrate the application of this process to management needs, including an SDM-based decision tool developed to identify optimal decisions for proactively managing risk of pneumonia epizootics in bighorn sheep (Ovis canadensis). Pneumonia epizootics are a major challenge for managers, including in terms of knowing how or when to manage risk. The decision tool facilitates analysis of alternative decisions for how to manage herds based on predictions from a risk model, herd-specific objectives, and predicted costs and benefits of each alternative. Managers can be confident resulting decisions are most effective, efficient, and realistic because they explicitly account for important considerations managers implicitly weigh when making decisions, including competing management objectives, uncertainty in potential outcomes and risk tolerance

    Proactive Management of Pneumonia Epizootics in Bighorn Sheep in Montana—Project Update

    Get PDF
    Pneumonia epizootics are a major challenge for effective management of bighorn sheep (Ovis canadensis). Approximately half of the herds in Montana have suffered die-offs since the 1980s, many of which were pneumonia events. A set of models that identify risk of pneumonia and the best management decisions given that risk would be of great value for proactive management of pneumonia epizootics. Our first objective is to design and test a risk model that will help predict a herd’s risk of pneumonia. We hypothesize that various factors increase risk through pathogen exposure, pathogen spread, and disease susceptibility. Analysis of these factors comparing herds with and without recent pneumonia histories using Bayesian logistic regression will allow us to design a risk model. Our second objective is to develop a proactive decision model that incorporates estimates of pneumonia risk to help evaluate costs and benefits of alternative proactive actions appropriate to those estimates. We will use a Structured Decision Making framework, which provides a deliberative, transparent, and defensible decision-making process that is particularly valuable in complex decision-making environments such as wildlife disease management. Together the resulting risk and decision models, to be completed this year, will help managers estimate pneumonia risk and identify the best management action based on both the severity of each herd’s predicted risk and costs and benefits of competing management alternatives. Ultimately, this project will demonstrate the development and application of risk and decision models for proactive wildlife health programs in Montana Fish, Wildlife and Parks

    A Risk Model for Proactive Management of Pneumonia Epizootics in Bighorn Sheep

    Get PDF
    Pneumonia epizootics are a major challenge for management of bighorn sheep (Ovis canadensis). Risk factors associated with the disease are poorly understood, making pneumonia epizootics hard to predict; such epizootics are thus managed reactively rather than proactively. We developed a model that identifies risk factors and addresses biological questions about risk. Using Bayesian logistic regression with repeated measures, we found that private land, weed control using domestic sheep or goats, pneumonia history, and herd density were associated with risk of pneumonia in 43 herds in Montana that experienced 22 epizootics out of 637 herd years from 1979–2013. Within high-risk areas occupied by herds, risk increased with greater amounts of private land and use of domestic sheep or goats for weed control. Herds had >10 times greater odds of having a pneumonia epizootic if they or neighboring herds within high-risk areas had a history of pneumonia. Risk greatly increased when herds were at high density, with nearly 15 times greater odds of pneumonia compared to herds at low density. Number of federal sheep and goat allotments, proximity to nearest herds, ram:ewe ratios, normality of winter and spring precipitation, and herds with native versus mixed or reintroduced origin were not associated with increased risk. We conclude that factors associated with risk of pneumonia are complex and may not always be from the most obvious sources. The ability to identify high risk herds will help determine where to focus management efforts and what risk factors most affect each herd, facilitating more effective, proactive management

    Modeling Proactive Decisions to Manage Pneumonia Epizootics in Bighorn Sheep

    Get PDF
    Pneumonia epizootics in bighorn sheep (Ovis canadensis) are a major challenge for wildlife agencies due to the complexity of the disease, long-term impacts, and lack of tools to manage risk. We developed a decision model to facilitate proactive management of pneumonia epizootics in bighorn sheep in Montana. Our decision model integrates a risk model to predict probability of pneumonia epizootics based on identified risk factors. It uses a structured decision making (SDM) approach to analyze potential decisions based on predictions from the risk model, herd-specific management objectives, and predicted consequences and trade-offs. We demonstrated our model’s use with an analysis of representative herds and analyzed the recommended decisions to understand them clearly. We learned that proactive management for each herd was expected to outperform in meeting multiple, competing management objectives compared to ongoing status quo management. Based on sensitivity analyses, we also learned that the recommended decisions were relatively robust with limited sensitivity to variations in model inputs and uncertainties; we expect this to be the case in future analyses as well. Our decision model addressed the challenges of uncertainty, risk tolerance, and the multi-objective nature of management of bighorn sheep while providing a consistent, transparent, and deliberative approach for making decisions for each herd. It is a unique tool for managing pneumonia epizootics using an accessible framework for biologists and managers. Our work also provides a case study for developing similar SDM-based decision models, particularly for other wildlife diseases, to address challenges of making complex decisions
    • …
    corecore