7 research outputs found

    Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture

    Get PDF
    The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised

    Cure of ADPKD by Selection for Spontaneous Genetic Repair Events in Pkd1-Mutated iPS Cells

    Get PDF
    Induced pluripotent stem cells (iPSCs) generated by epigenetic reprogramming of personal somatic cells have limited therapeutic capacity for patients suffering from genetic disorders. Here we demonstrate restoration of a genomic mutation heterozygous for Pkd1 (polycystic kidney disease 1) deletion (Pkd1(+/−) to Pkd1(+/R+)) by spontaneous mitotic recombination. Notably, recombination between homologous chromosomes occurred at a frequency of 1∼2 per 10,000 iPSCs. Southern blot hybridization and genomic PCR analyses demonstrated that the genotype of the mutation-restored iPSCs was indistinguishable from that of the wild-type cells. Importantly, the frequency of cyst generation in kidneys of adult chimeric mice containing Pkd1(+/R+) iPSCs was significantly lower than that of adult chimeric mice with parental Pkd1(+/−) iPSCs, and indistinguishable from that of wild-type mice. This repair step could be directly incorporated into iPSC development programmes prior to cell transplantation, offering an invaluable step forward for patients carrying a wide range of genetic disorders

    Piezo1 integration of vascular architecture with physiological force

    Get PDF
    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic¹⁻⁵. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca²⁺-permeable non-selective cationic channels for detection of noxious mechanical impact⁶⁻⁸. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology

    Mechanism of imprinting on mouse distal chromosome 7

    No full text

    Epigenetic instability caused by absence of CIZ1 drives transformation during quiescence cycles

    No full text
    Abstract Background Cip1-interacting zinc finger protein 1 (CIZ1) forms RNA-dependent protein assemblies that stabilise epigenetic state, notable at the inactive X chromosome in females. CIZ1 has been linked with a range of human cancers and in mice genetic deletion of CIZ1 manifests as hyperproliferative lymphoid lineages in females. This suggests that its role in maintenance of epigenetic stability is linked with disease. Results Here, we show that male and female CIZ1-null primary murine fibroblasts have reduced H4K20me1 and that this compromises nuclear condensation on entry to quiescence. Global transcriptional repression remains intact in condensation-deficient CIZ1-null cells; however, a subset of genes linked with chromatin condensation and homology-directed DNA repair are perturbed. Failure to condense is phenotypically mimicked by manipulation of the H4K20me1 methyltransferase, SET8, in WT cells and partially reverted in CIZ1-null cells upon re-expression of CIZ1. Crucially, during exit from quiescence, nuclear decondensation remains active, so that repeated entry and exit cycles give rise to expanded nuclei susceptible to mechanical stress, DNA damage checkpoint activation, and downstream emergence of transformed proliferative colonies. Conclusions Our results demonstrate a role for CIZ1 in chromatin condensation on entry to quiescence and explore the consequences of this defect in CIZ1-null cells. Together, the data show that CIZ1’s protection of the epigenome guards against genome instability during quiescence cycles. This identifies loss of CIZ1 as a potentially devastating vulnerability in cells that undergo cycles of quiescence entry and exit

    Variant Ciz1 is a circulating biomarker for early-stage lung cancer

    No full text
    There is an unmet need for circulating biomarkers that can detect early-stage lung cancer. Here we show that a variant form of the nuclear matrix-associated DNA replication factor Ciz1 is present in 34/35 lung tumors but not in adjacent tissue, giving rise to stable protein quantifiable by Western blot in less than a microliter of plasma from lung cancer patients. In two independent sets, with 170 and 160 samples, respectively, variant Ciz1 correctly identified patients who had stage 1 lung cancer with clinically useful accuracy. For set 1, mean variant Ciz1 level in individuals without diagnosed tumors established a threshold that correctly classified 98% of small cell lung cancers (SCLC) and non-SCLC patients [receiver operator characteristic area under the curve (AUC) 0.958]. Within set 2, comparison of patients with stage 1 non-SCLC with asymptomatic age-matched smokers or individuals with benign lung nodules correctly classified 95% of patients (AUCs 0.913 and 0.905), with overall specificity of 76% and 71%, respectively. Moreover, using the mean of controls in set 1, we achieved 95% sensitivity among patients with stage 1 non-SCLC patients in set 2 with 74% specificity, demonstrating the robustness of the classification. RNAi-mediated selective depletion of variant Ciz1 is sufficient to restrain the growth of tumor cells that express it, identifying variant Ciz1 as a functionally relevant driver of cell proliferation in vitro and in vivo. The data show that variant Ciz1 is a strong candidate for a cancer-specific single marker capable of identifying early-stage lung cancer within at-risk groups without resort to invasive procedures

    Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells

    Get PDF
    Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells
    corecore