2,151 research outputs found

    Constraining the Evolution of Dark Energy with a Combination of Galaxy Cluster Observables

    Full text link
    We show that the abundance and redshift distribution (dN/dzdN/dz) of galaxy clusters in future high--yield cluster surveys, combined with the spatial power spectrum (Pc(k)P_c(k)) of the same clusters, can place significant constraints on the evolution of the dark energy equation of state, w=w(a)w=w(a). We evaluate the expected errors on wa=dw/daw_a=-dw/da and other cosmological parameters using a Fisher matrix approach, and simultaneously including cluster structure evolution parameters in our analysis. We study three different types of forthcoming surveys that will identify clusters based on their X-ray emission (such as DUO, the Dark Universe Observatory), their Sunyaev--Zel'dovich (SZ) decrement (such as SPT, the South Pole Telescope), or their weak lensing (WL) shear (such as LSST, the Large Synoptic Survey Telescope). We find that combining the cluster abundance and power spectrum significantly enhances constraints from either method alone. We show that the weak-lensing survey can deliver a constraint as tight as Δwa0.1\Delta w_a \sim 0.1 on the evolution of the dark energy equation of state, and that the X-ray and SZ surveys each yield Δwa0.4\Delta w_a \sim 0.4 separately, or Δwa0.2\Delta w_a \sim 0.2 when these two surveys are combined. For the X-ray and SZ surveys, constraints on dark energy parameters are improved by a factor of two by combining the cluster data with cosmic microwave background (CMB) anisotropy measurements by Planck, but degrade by a factor of two if the survey is required to solve simultaneously for cosmological and cluster structure evolution parameters. The constraint on waw_a from the weak lensing survey is improved by 25\sim 25% with the addition of Planck data.Comment: 13 pages. v2: Expanded discussion of weak lensing survey (LSST), improved CMB analysis, references added, final version published in PR

    GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.

    Get PDF
    NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Long-term ecological research on Colorado Shortgrass Steppe

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012

    Global Analysis of Genetic, Epigenetic and Transcriptional Polymorphisms in Arabidopsis thaliana Using Whole Genome Tiling Arrays

    Get PDF
    Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation

    Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands

    Get PDF
    To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Low-Frequency Observations of the Moon with the Murchison Widefield Array

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system

    Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the murchison widefield array

    Get PDF
    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z=0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ~700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin-2. The radio lobes have one of the steepest spectral indices yet observed: α = -2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10-7 Mpc-3 and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle
    corecore