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!=- Simple tangent, hard site chains near a hard wall are modeled with*.: “-’

a Density Functional (DF) theory that uses the direct correlation function,

c(r), as its “input”. Two aspects of this DF theory are focused upon: 1) the

consequences of variations in c(r)’s detailed form; and 2) the correct way to

introduce c(r) into the DF formalism. The most important aspect of c(r) is

found to be its integrated value, 3(0). Indeed, it appears that, for fixed 6(0),

all reasonable guesses of the detailed shape of c(r) result in surprisingly

similar density distributions, p(r). Of course, the more accurate the c(r),

the better the p(r). As long as the length scale introduced by c(r) is

roughly the hard site diameter and as long as the solution remains liquid-

like, the p(r) is found to. be in good agreement with simulation results.

The c(r) is used in DF theory to calculate the medium-induced-

potential, U~(r) from the density distribution, p(r). The form of UNl(r) can

be chosen to be one of a number of different forms. It is found that the

forms for U~(r), which yield the most accurate results for the wall problem,

are also those which were suggested as accurate in previous, related

studies.
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1. Introduction

The properties ofpolymers near solid surfaces are of obvious

technological importance, and theories have been proposed for various

surface properties. The current study has been directed towards a more

complete understanding of the equilibrium structure and

thermodynamics of inhomogeneous systems with the intent of eventually

investigating wetting and adhesion issues; however, numerous other

applications in both traditional and non-traditional polymers can be

imagined.

Density functional (DF) theory was the methodology adopted for this

study. In the previous paperl, referred to here as Paper I, we reviewed the

basic DF theory and described a new and highly efficient solution

methodology while, in the current paper, DF theory is investigated with

more accurate input and different medium induced potential types.

Density functional theory has evolved out of tools developed for the

study of bulk liquid state properties. As a result, great emphases is placed

upon the interaction-site correlation functions, with the inhomogeneous

density, p(r), being viewed as the analog of the pair correlation, g(r), in

bulk liquids. This analogy, however, should not be considered an

equivalency.

The repulsive interactions, which are central to the

of the bulk liquid state, are also important to the complete

of surface properties such

that p(r) is more strongly

as adhesion. However, it should

understanding

understanding

be appreciated

affected by the attractive contribution to the



< .,
2

site-site interactions than the bulk g(r) would be. This follows directly

from the proportionality between the hard-wall contact density and

pressure. As site-site attractions are’’turned-on’’ the pressure and,

consequently, the contact density is reduced. The density distribution

becomes increasingly less sensitive to the site-site attractions as the.

distance is increased from the wall, and, of course, attractions between the

wail and the polymer further complicate the system’s response.

Here, we are interested in the study of inhomogeneous, purely

repulsive, hard-site systems primarily because of the nature of our

approach which centers about the direct correlation function, c(r), of the

homogeneous system. Since the direct correlation function of attractive

systems is often treated as an expansion

system, the theoretical treatment of the

needs to be understood in detail.

about the c(r) of the repulsive

underlying repulsive system

The general methodology for applying density functional theory TO

molecular systems was developed by Chandler, McCoy, and Singer z (CMS)

and first applied to diatomics. Although its original application to

diatomics used the direct correlation function as “input”, it also

encompasses the later molecular-DF theories that use the equation-of-

state as input. For clarity, direct correlation finction based approaches

are referred to as CMS-DF theories, and equation-of-state based

approaches as weighted-DF theories (WDF).

A number of previous, polymeric DF studies have taken place within

the CMS formalism. The first “polymeric” application was a path-integral

treatment of quantum helium3. This was followed by studies of rotational
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isorneric state models of simple polymers4’5. The more complex phase

r ,

behaviors of blends6 and diblocks7 were expIored with simple tangent s~te

models. Recent work8 has investigated tangent site chains near walls

with attractive “stripes”. Finally, CMS-DF theory has been usedg as the

foundation for a theory of pair correlation functions in bulk molecular

systems.

Weighted density functional (WDF) theories have also been applied

to polymeric systems. The initial development of WDF theories for

polymers was by Woodward10 and Kierlik and Rosinburg~l. More realistic,

tangent site models were addressed by Yethiraj and Woodward12, with an

approach which has been more fully developed in a number of subsequent

studies 13.

Both the structure and thermodynamics of the inhomogeneous

system are predicted by DF theory. The structure arises from the two

coupled equations:

P(I)=@-J(r)] (1.1)

(L2)

and

U(l-) = uE(Ij i- uM[p(Tj]

where p(r) is the inhomogeneous density. Here, U(r) is an effective

external field consisting of the “bare” external field, UE(r), and a medium

induced external field, LTI1[p(r)]. The functional, G[U(r)], denotes a

mapping of the external field onto the density where the brackets [...]

indicate its functional nature. These equations, in general, must be solved
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in a self-consistent manner. The free energy of the inhomogeneous system

can then be expressed, in most cases, as a functional of the density and

field.

The theoretical treatment, as presented here, is broad. If the

medium induced potential is set to zero and U(r) is taken to include site-

site interactions, then G becomes a full, many particle calculation with all

its computational demands. The power of density functional theory is to

simpli& the calculations represented by G to those of a single particle

calculation. For instance, the problem of many electrons in the external

field created by a number of atomic nuclei is usually treated in a manner

where G is the Schrodinger equation for a single electron in an external

field. In other words, the electrons are treated by G as though there were

no electron-electron interactions, and, consequently, the relatively

complex UM(Z) approximately corrects for energetic and statistical

interactions between electrons.

An early precursor to DF theory has ,come to be known as Self

Consistent Field (SCF) theory 14,although all density functional theories

are, strictly speaking, also “self consistent field- theories. In SCF theory,

the polymers are thread chains with the mapping functional G!IJ(r)l

being, in effect, Schrodinger’s equation. This makes computations

relatively fast; however,

atomic level detai115.

In order to retain

the thread nature of the chain washes

such atomic level structure, Chandler,

out most

McCoy,

and Singer2 let G[U(r)] represent non-interacting molecules. This

formalism permitted systems more complex than simple atoms to be
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studied, and the method was made more general by the introductions of the

idea of using a Monte Carlo simulation of a single chain in an external

field as a means of evaluating GIW)I.

In the current study, polymer melts near hard walls are reexamined

from the CMS perspective. Consequently, the direct correlation function,

c(r), for the bulk polymer, which is in equilibrium with the inhomogeneous

system, is used as “input”. Loosely speaking, c(r) contains both equation of

state and structural information. In particular, the k=O component of the

Fourier transform of c(r), 6(0), is directly correlated with the system’s

isothermal compressibility which is an equation of state quantity. On the

other hand, the rate of decay of c(r) introduces a length scale that has a

strong influence on the particle correlations. In order to explore the

structural consequences of c(r), various forms of c(r) were studied where

:(O) was used to fix the compressibility and the resulting

were compared.

The remainder of the paper is organized as follows.

density profiles

In section 2, the

theoretical considerations introduced above

Details of the molecular model and solution

in section 3. Our results will be reported in

section 5. In the appendix, the related case

liquids is treated.

2. Theory

will be elaborated upon.

techniques will be presented

section 4 and discussed in

of inhomogeneous hard sphere

The density functional methodology employed here is based upon a

second order expansion of the excess Helmholtz free energy of the
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inhomogeneous system about the homogeneous system. It is important

that an intelligent choice of the ideaI system be used in the free energy

expansion. This ideal system must be physically similar to the true

system and, at the same time,

and inhomogeneous states.

Many of the underlying

“simple” to evaIuate in both homogeneous

complexities of DF theory arise from the

need to evaluate the ideal system (non-interacting chains, in our case)

the same p(r) as in the full system (i.e., not at the same external field).

at

This necessitates the introduction of an ideal external field that can be

expressed in terms of p(r) through the minimization of the system’s free

energy. The density profile can then be found in a self-consistent manner.

We have discussed the basic derivation of density functional theory in

Paper I, and the interested reader is referred there for more details.

In previous work, (polymer reference interaction model – Percus

Yevick) l?RISM-PY liquid state theory was viewed as an inherent part of

the method, forming a combined PRISM-DF’ theory, and the net accuracy

of this approach was evaluated by comparisons with simulation and other

theories. Such work5’lG has demonstrated that the PRISM-DF theory yields

accurate contact densities and profiles where, as shown in figure 1,

deficiencies in PY-PRISM are compensated for by the (hypernetted chain)

HNC type of field which comes directly from DF theory (see Paper I),

(2.1)
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where ~= l/k~ T; T is the absolute temperature; and k~ is the Boltzmann

.

constant. The HNC form

as seen in figure 1, tends

is

to

exact for sufficiently small values of j CAP,but,

over-predict the field strength at high bulk

density when more correct liquid state input

forms of the medium induced field have been

is used. Recently, other

suggested9,17.

One of these suggested alternative fields with a weaker response to

~large values of cAp is the Percus-Yevick (PY) field:

W(I)M,PY = -ln[l+ JC(II-<1)442’W’] (2.2)

where the PY field is smaller than the HNC for large cAp values while

approaching the HNC value for small values. This field type tends to be

too weak.

The alternative field type that we consider which is intermediate

between the HNC and PY types is the Martynov-Sarkisov (MS) field:

II+2JC(IK-il)Ap(d)&’ + 1,m-J(dM,Ms=-~ (2.3)

which also guarantees that the HNC form will be recovered for small

fields. A more general form proposed by Ballone et al.ls permits one to

interpolate between the MS and HNC forms; however, in the current

study, this further refinement was not explored.
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Unfortunately, in density functional applications, the operators

present in all of the non-HNC fields can be problematic. When

~c@-dl)@(d)di fall. below certain threshold values (for example, -I.() for

PY and -0.5 for MS), the fields fail to be real valued. In order to insure that

simulation noise during the convergence process does not cause this line

to be crossed, we switch to HNC fields when ~C(~I- @p(i)d< = o.

Self-Consistent-Field theory uses a field similar to the HNC

expression in equation (2.1); however, since the chains are of infinitesimal

width, the c(r) becomes a delta function. This leads to an SCF-field of the

form

P“(dM,scF=“OAdd (2.4)

where co is the integrated value of c(r). For this case the field is local in

nature (although chain connectivity results in a non-local nature for the

theory as a whole). The SCF-field does not see the density depletion due to

the wall except as a boundary value issue, and, in addition, the length

scale associated with the site diameter is non-existent. A typical result

this type of field is shown is figure 1. Of course, SCF theory is not

for

constructed to model monomeric length scales, and it fails to capture the

consequences of the site packing that results in the enhancement of site

density near the wall.

Information is fed to CMS theory through the direct correlation

function, c(r), which is a quantity containing a considerable amount of
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information. The direct correlation function is closely associated with the

equation of state through the isothermal compressibility

()J ap ~N

p = ~ = p(l - Np2(0))
(2.5)

where :(O) is the k=O component of c(r)’s Fourier transform. If the

compressibility is known as a function of density, the pressure can be

found through integration; however, from this perspective, the pressure is

not completely determined by the compressibility at a single density. It is

intriguing that density functional theory permits the pressure to be found

from the wall contact density, and this suggests that pressure can be

found from the compressibility-dominated c(r) without the necessity of an

integration over density.

In the current study, the direct correlation function is found in a

number of ways, some more approximate

reference interaction site model (PRISM)

Ornstein-Zernike equation, which can be

by

h{r)=co*c* co(r) +pa*c*h(r)

than others. First, polymer

theory is used. The generalized

viewed as defining c(r), is given

(2.6)

where “*” indicates a convolution integral; h(r)= g(r)- 1; g(r) is the inter-

chain pair correlation function; and co(r) is the intra-chain pair correlation
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function. The ti(r)’s used were found from Monte Carlo simulations of

pearl necklace chains. In figure 2, the Fourier transform of this

correlation function, h(k), is shown for various densities along with that

of a freely jointed chain. For densities over 0.668, the o(r) is assumed to be

independent of density.

For the case of hard

to

g(r) = O for r

c(r) = O for r

sites, the (Percus-Yevick) PY closure collapses

(2.7)

where the direct correlation calculated through this “uncorrected PY”

closure wilI be referred to a cpy(r), and where the co(r) was evaluated from

Monte Carlo simulations of pearl-necklace melts. Using this closure with

an HNC-DF theory yields excellent agreement with simulation; however,

the compressibility is not well described by ~(0) through the relation (2.5).

In the current study, we insist that 2(0) be consistent with the

isothermal compressibility that is found through the equation of state.

This condition is enforced in a number of ways.

by a constant yielding a “corrected PY” closure

indicated, “PY” will denote this corrected form.

added to c(r) outside the core of the form

First, cpy(r) is multiplied

and, unless otherwise

Second, a tail functionlg is
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g(r) = O forr<a

c(r) = c(o-)(~)x for r 20
(2.8)

with x varied after each PRISM iteration to force the c(r)’s integrated

va~ue to be consistent with its equation of state value.

In order to gauge the relative importance of c(r)’s integrated value

as compared to that of its detailed structure; we have also looked at a

number of simplified c(r) ’s. The simplest of these is a square well c(r)

where

3t(0)for r < ~c(r) = —
47CG3

c(r) = O forr>a

(2.9)

Nearly as straightforward is a “slant” c(r) given by

()3:(O) ~_q forr<a
c(r) = ~ r

c(r) = O forr>a

(~.lo)

3. Chain Models and Solution Method

The density

intended to mimic

functional calculations in the current study are

the inhomogeneous density profiles which result from

the presence of a hard wail on a melt of hard 20-mer, pearl-necklace chains

at varying densities. At all densities, the density profile, p(z), at contact is

related to the pressure, P, by20
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(3.1)p(z=o) = pP

where p(z) is the inhomogeneous site density. Far from the wall the

density adopts its bulk value, Pb.lk. At low densities, the density will

increase gradually to PbUlkover a distance equal to roughly the chain’s

radius of gyration.

oscillations develop

As the density of pearl necklace chains increases,

in p(z) with a period of roughly the hard site diameter;

however, as the chain backbone becomes more complex, other length scales

are introduced which are evidenced5 in p(z).

In the ideal gas limit, the pressure will be related to the density far

from the wall by

Pbulk _ p

Y-P
(3.2)

where N is the chain length and (Pbulk~) is the molecular density. From

equations (3. 1) and (3.2) it is clear that in the low density limit, the ratio of

contact to bulk densities

p(o) 1— =.
Pbulk N “

approaches UN:

(3.3)

For all chains in the current study, the bond length, t, is rigid and

is equal to the site diameter. Consequently, o is taken as the unit length

in our study, 4=cr=l. No bond angle potentials are imposed, and,

consequently, the chains should be viewed as freely jointed to within the

restrictions of the non-bonded, site-site potentials. For the pearl-necklace
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(PN) chain model, these non-bonded, intra-chain interactions function to

exclude overlap between any two sites on the chain:

U(ra,y)= w ra,.( < G

U(ra,y)=o ra,y ~ o

where U(ru,Y) represents the energy

the cxthand the ythsite on the chain.

For sites with a distance ra,y between

The equation of state for pearl-necklace chains has been

investigated by Chang and Sandlerzl for chain lengths up to 16 sites; b}-

- Escobedo and dePablozz for 16, 32, and 51 site chains; and by Stell et al.~3

for 51 and 201 site chains. In figure 3, an interpolation of these results to

20-site chains is shown. The interpolation is fitto the empirical function

BP= p(+exp(.\(p/O)B))

where A=5.4267, and B= O.73858. This yields a relationship for the

compressibility, K,

(3.5)

(3.6)

and, consequently, of the k=O value of the Fourier transform of the direct

correlation function, t(0) ,
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Also shown in figure 3, are equation of state

densities in simulations of20-site chains12’13

densities, these simulations become difficult

(3.7)

points found from contact

near hard walls. For high

and the error bars are

increased. Over the entire range of densities of interest, equation (3.5) is

in excellent agreement with extrapolations from the equation of state

developed by Escobedo et al.zz for similar systems.

In a melt of pearl-necklace chains, excluded volume interactions are

screened out resulting in random walk scaling on long length scales

(R=- NU2). As the density is reduced, this distribution crosses over to that

of a self-avoiding random walk where R~-N3’5. In order to capture the

effect of the medium on the single-chain distribution function within

density functional theory, we have used three types of ideal chains: the full

pearl-necklace, the second nearest neighbor, and the freely jointed chain

models.

The pearl-necklace (PN) chain would best model low-density melts

and perhaps, chains in the vicinity of the wall. The second nearest

neighbor (NN) chains differ from PN chains in terms of their non-bonded

interactions, where equation (3.4) is replaced by

)‘(ra,a+2 =m ‘a,a-t2 <c)

)‘(ra,a+2 =0 %,a.z~~
(3.8)
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where U(r~,u+z) represents the energy for sites with r. .+Z distance between

the ath and the (u+2)th site on the chain. These chains would be expected to

model a melt reasonably well since the random-walk nature of the chains

would be maintained far from the wall while local chain collapse would be

avoided. Finally, the freely jointed (FJ) chains have no excluded volume

restrictions, and, consequently, would be expected to be the least capable of

modeling a melt of P.N chains. On the other hand, FJ chains are similar to

the ideal chain models used in SCF theories, which, if for no other reason,

make FJ chains of interest in the current study.

The iterative process is begun with the assumption of an initial

density profile on a grid spacing of 0.0040; an initial field is calculated

from this density profile, equation (1.2) and one of the field relations given

by equations (2.1) to (2.4). An iterative loop is then begun wherein the site

density is found from the average over position in a single chain

simulation under the previously calculated external field. Each

simulation takes place between two atomically smooth hard walls,

positioned perpendicular to the z-axis, and separated by a distance of 20a.

Since the walls are invariant in both the x and y-directions, the chain is

re-centered within the x and y-directions periodically during the

simulation.

For all data presented here, the initial density profile is chosen to be

constant at ~bUlkto begin the lowest density run. Subsequently, the final

converged profile is resealed from the previous density to the current
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density, andequilibration then takes place from ttis point. For moderate

packing fractions (generally, q s O.30), a high level of convergence is

reached within approximately 50 iterations of 106 samples each. As the

packing ii-action rises, however, substantially more samples are necessary

in order to reduce the simulation noise inherent in the higher field

calculations.

Over the course of the simulation, statistics are collected, on a site-

by-site basis, which represent the density profiles of the chain as it moves

between the hard walls, constrained by the model-specific potential

interactions as well as the bulk-field energies of our DF theory. Monte

Carlo moves are accomplished through both translation and reptation

moves. The reptation moves are simple in nature, consisting of the

removal of a single site from one end of the chain model and its

reattachment to the complementary end. Translation moves are limited to

a maximum of 2 .Oa in either the positive or negative z-direction. The

number of attempted moves is equivalent to Nz times the number of

samples desired (e.g., for the 106 samples above, our 20-mer has 400x10G

attempted moves). Of these moves, 15% are translation, with the

remaining moves being split equally among left-hand and right-hand

reputations.

As discussed in Paper I, the Metropolis weighting of each move is

determined with respect to the external, umbrella field

u(z)=UE(Z)+Uu(z) (3.9)
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(3.10)

where

( 1.
4

fKJu(z) = a z ~ ‘Cen’er
center 9

zC,n,e,is halfway between the walls; and a is an empirical constant (a=-O.40

for this work) chosen to enhance sampling. This forces the chains to spend

much of their time near the walls where good statistics are essential to the

convergence of the density functional theory. For atomic hard spheres, the

calculation is, of course, much simpler as is discussed in the appendix.

After the completion of a full iteration, density statistics are first

averaged about the middle of the profile and are then resealed to achieve

the correct bulk density within the middle 10% of the density profile. Once

this has been done, a new field is calculated from this “simulated” density.

To help maintain the stability of the iteration scheme, the density profile is

found by mixing 15% of the simulated profile with 8570 of the old profile.

The field calculated from this new profile is mixed in a 1/99 ratio with the

old field to generate the new field for the next iteration. These percentages

are slightly modified based on the current percentage of iterations

completed or the current standard deviation between the raw old and new

profiles in an effort to promote initial equilibration and hinder divergence

due to large-scale noise, respectively. These numbers were arrived at

empirically, and must be carefully monitored. If necessary, they must be

adjusted in order to allow successful convergence, especially with fields

l-. -----~
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containing high magnitude field differences. Insufficient sampling or

over-mixing of the new profiles with the old leads to wildly oscillatory

fields which have difficulty converging, while under-mixing of the new

profiles can lead to false or excessively slow convergence.

4.

over

Results

There are several phenomena of interest which have been noticed

the course of this work. Foremost among these is the ability to speci~

the contact density through specification of c(r)’s integrated value, 2(0).

Figure 4 presents the pressures predicted through equation (3.1) and our

implementation of CMS DF theory, overlaid on the 20-mer equation of

state presented in figure 3, from which our compressibility values were

derived. The quality of agreement between the equation of state and our

calculations for qs 0.35 is excellent, provided the MS form for the mean

induced

leads to

field is employed. Employment of the HNC mean induced field

pressures which are substantial over estimations, while the PY

mean induced field leads to pressures which are under estimations. While

our equation of state calculations stray from the bulk equation of state for

packing fractions above 0.35, so too does the equation of state derived from

the Monte Carlo simulations by Yethiraj. These difficulties may be related

to the confinement of the chain between the hard walls and subsequent

induced pressure differences, or they may simply be due to the extreme

difficulty of extrapolating a correct value for p(z=O) at higher densities

where there is a precipitous rise in density near wall contact.
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The DF calculation turns out to be less sensitive to the nature of the

chain model used in the DF calculation to mimic the full excluded volume

of the true (i.e., pearl necklace) chain than we had anticipated. The

inhomogeneous density profiles are identical for calculations employing

either PN or NN chain models, while, on the other hand, the l?J chain

model shows substantially lower pressures at higher densities.

Although there seems to be little difference between the PRISM-PY

and “slant” forms for c(r), at least as they relate to the overall system

pressure, the square-well form shows a sharp drop in pressure at higher

densities. This is likely due to the longer range (see figure 10) of the

interaction field, leading to significantly greater propagation of field

interactions. For the square-well potential, visible density fluctuations

extended into the central region of the cell (at which bulk conditions are

explicitly assumed) at packing fractions as low as 0.40 ( pa3 = 0.764). By

comparison, all other forms for c(r) avoided this problem until the packing

fraction neared 0.50 ( pG3 = 0.955). Whether this drop in pressure is a real

feature of the system or a consequence of violating the initial assumption

of a bulk liquid region in the center is currently unexplored.

While the form of c(r) employed seems to differentiate between

experimental pressures only at high densities, there is a more pronounced

effect of the differing forms of c(r) on the density profiles, even at moderate

densities, as shown in figures 5 and 6. Figure 5 demonstrates the

substantial differences between the density profiles generated

differing functional forms for c(r), while figure 6 compares the

with

“slant”,



20

PRISM-PY, and PRISM-Tail generated profiles to observations of full

simulations.

Here, it can be clearly seen that the slant, PRISM-PY, and PRISM-

Tail forms for c(r) yield reasonably similar results, while those of the

square-well form differ significantly. While the PRISM-Tail c(r) seems to

fit the experimental data best overall, the “slant” form does a good job of

capturing the quantitative details of the simulation data. Both curves

suffer from a slight out of phase character, with the “slant” form being

more pronounced. As well, both forms yield a slight underestimation of the

depth of the initial trough and a slight overestimation of the height of the

- first peak from the wall. For reference, figure 7 compares our results

utilizing the corrected PRISM-Tail c(r) and MS field to both the

simulation and WDA results found by Yethiraj’s at a relatively high

density. We find our results to be of similar quality to that obtained with

current WDA techniques.

The

functional

overall quality of the

form chosen for c(r),

density profile is dictated not only by the

but also by the mean induced field type

employed as well. While the most significant effect is that exhibited by the

field tfie’s effect upon the contact density, it is also exhibited in the

secondary and higher order density oscillations present as the polymer

relaxes to its bulk behavior. Figure 8 presents a schematic wherein two

significant features are noticeable: foremost, the 13NC field predicts a

significantly higher contact density than does either the MS or PY field,

even for moderate densities. Additionally, at moderate distances from the

wall, the HNC field yields higher absolute values for the higher order
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density peaks and troughs, as well as locating such features at somewhat

closer approaches to the hard wall. While the PY and MS fields differ

somewhat in their predictions for contact density, with the MS being

slightly higher than the PY, both fields quickly settle into long range

profiles that are

To ensure

nearly identical.

that such features arise strictly horn the field type

chosen, rather than from a combination of field type and compressibility

constraints, the profile of a compressibility correc~ed and uncorrected

system, utilizing the PRISM-PY form for c(r), are presented in figure 9.

The results presented indicate that enforcing the correct value of ;(0) has

little effect on the location of the density profile features of interest, whiie

having a noticeable effect on the amplitude of these features.

To understand the origin of the phase invariance found through

scaling the direct correlation function, the different forms of c(r) must

first be explored.

within this work.

Figure 10 presents the four major c(r) types employed

While most of these forms of c(r) look distinctly different

from each other in this figure, it should be noted they all possess the same

t(0). The insert, on the other hand, presents the same functions plotted as

r2c(r) so that the areas under the curves are directly proportional to 2(0).

Consequently, the characteristic length scale in the direct correlation

finctions is apparent when plotted in this manner.

In most cases, the change in ;(O) is accomplished through simple

constant scaling of the direct correlation function. This leads to results

wherein only the relative amplitude of the minima seen in the insert to



figure 10areaffected, while

the r=O core of the particle

the location of these minima
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their location in terms of displacement from

remain unchanged. This is important, since

appear to set an effective length scale for the

functioning of the density functional theory. Thus, the form of the c(r)

function controls the length scale of interactions between sites, and, to

some extent, the strength of these interactions as well. ‘The overall value of

t(O}, on the other hand, serves as a type of “fine-tuning” control to adjust

the strength of these interactions, while having no significant impact on

the interaction length scale. Of particular interest when comparing the

different forms of c(r), and their eventual outcome, is the fact that the

“slant”, PRISM-PY, and PRISM-Tail all have qualitatively similar features

when viewed as r2c(r), while the square-well form is distinctly different.

The above arguments are not true for the PRISM-Tail form of c(~),

due to the overall value of ;(0) being enforced not by multiplication, but,

instead, by self-consistent adjustment to the radial power of the tail.

Nevertheless as the density of the liquid system increases, the PRISM-Tail

exponent rises rapidly. Thus, at moderately high densities, the PRISM-

Tail form for c(r) becomes increasingly similar to the PRISM-PY form with

corrected 2(0), with similarly located density fluctuations and only small

differences in density amplitudes, as can be seen in figure 9.

Investigations show that the system is largely insensitive to

differences in the intra-chain volume exclusion interactions. While the

freely jointed chain does indeed show a lowering of overall

pressure, this does not seem to correspond to a large-scale

system

difference in
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.

overall profile. It should be noted, however, that while the density profiles

seem relatively insensitive to the changes in the intra-chain interactions,

the equation of state (figure 4) shows quantitative differences between the

chain types. Of particular interest is the fact that the equation of state for

the freely jointed chain differs significantly, while the overall profile

differs Iittle. Also of interest is the slight phase compression exhibited by

the freely jointed chain, which appears to be the result of the extreme

compressibility of the chains near the hard wall surface.

5 Discussion

Several conclusions immediately follow fi-om the data presented

herein. Foremost among these is the ability of the pressure of the system

to be primarily specified by employing the correct value of 2(0).

Deviations, which occur due to the functional form employed for c(r),

represent small percentages of the overall equation of state, provided the

assumption of bulk phase equilibrium at the center of the cell is not

violated. While this may seem to be similar to the WDA theory discussed

above, it obviates the need for a complete equation of state to perform DF

theory calculations that ~ield the correct bulk pressure. Instead, a single

compressibility measurement of the system in question will suffice to

allow control of the bulk pressure. This is of special importance in the case

of molecules with multiple types of sites, where the calculation of site-

specific equations of state makes WDA approaches problematic. Of course,

if the exact c(r) is available, either from theory, simulation, or experiment,

an equation of state is not necessary for accurate DF predictions.
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Along with careful attention to the field type, care must also be paid

when employing a specific functional form of c(r). Obviously, the best

choice for the form of c(r) would be a directly calculated value, but this is

often difficult. Instead, we have found that both PRISM-PY (with

appropriate scaling to enforce the correct value for ?(0)) and PRISM-Tail

approaches to calculation of c(r) yield quite good results. Further, for

quick exploratory calculations, the “slant” funczion as presented herein

shows reasonably good agreement with simulation profiles, while

representing a significant computational savings from the PRISM

calculations. In addition, the slant c(r) is a simple two parameter (2(0)

and site diameter) model which is reasonably realistic.

The effect of the intra-chain constraints on the pressure and excess

free energy of the system can be understood by considering the degree to

which the chains can respond to the confirmational restrictions

introduced by the wall. In the case of the freely jointed chain the entropic

reduction engendered by the hard wall boundary conditions is

significantly lessened due to the chain’s ability to pack multiple sites

within the same space. Since the pearl necklace chain must exclude sites

from within the hard core of other sites, the overall effect upon the system

is that of greater suppression of entropic freedom than encountered in the

freely jointed system. Thus, the overall effect is a higher pressure for the

pearl necklace system (due to the inability of the chain to collapse in the

high-density region near wall contact).
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Interestingly, the nearest neighbor chain is much more similar to

the pearl necklace chain in its pressure than it is to the freely jointed

chain. This, in turn, implies that, for the chains investigated here, the

primary interaction of importance is the volume exclusion between the

primary (aih ) and tertiary ((x+2)th sites. This is not surprising since

similar behavior was obsemed earlier in the self-consistent PRISM work of

Schweizer et al.24. On the other hand, the importance of this difference is

obviously a function of density, as increasing densities cause the sites to

be packed increasingly closer, leading to an increase in non-primary

interactions, and subsequent differentiation between a model which

enforces only the primary interaction and one which enforces all

interactions.
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Appendix The Atomic Hard Sphere Case

A one would expect, the application of the procedures in the body of

the paper to the atomic hard sphere case results in great simplifications.

For comparative purposes, the hard sphere case is of interest to the

current study. Qualitatively, the conclusions drawn for the polymer

also hold for the atomic case.

case

The equations necessary for Hard Spheres follow. The relationship

G[U(~] in equation (1.1) simplifies to

P(z) = Pbulk exP[-~U(Z)]

and, as a result, no simulation (or umbrella field) is required. The

- Carnahan-Starling equation of statez5 is

pP=l+q+q’-q’

P (l~q)’ “

The PY solution for the direct correlation

c(r) = –Ll –6q@ – 0.5~Llr3

where

Ll=(1+ 2Tf

(1+’

(Al)

(A&)

functionz5 is

(A.3)

(A.4)

and

12=-( l+o.5q)2

(1-q)’ “
(.%5)

The k=O component of the Fourier component of the direct correlation

function as found from the equation of state is

7c(2Tl– 9)Cc.(o)=
6(1-q)4

(A.6)
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and, from the PY solution,

.

7C(V3- 4q2 + 2?-1– 8)
tpy(o) =

6(1-@4 “

The partial integration of c(r) over x and y is, for the PY case,

[
@’(1 -lzl’)];Cpy(z) = n -k,(l-z’)-4TlZ2 (l-lz13)-y

for the slant case,

and, for the

&lt@ = @l-3z’ +21213];

square well case,

(A.7)

(A.8)

(A.9)

Csclwell(z)= ~(o) :[1- z’] o (A.lo)

As for the polymer case,

insensitive to the shape of the

the wall contact densities (or pressures) are

direct correlation function. This

relationship held even for cases where the densities were otherwise

dissimilar. In figure A. 1 it is shown that the MS field type gives an

excellent description for the equation of state for hard sphere liquids.

Although, the slant results are shown, the PY and square well give, to

within numerical noise, identical contact values. It is of particular

interest to note that slant density profiles become crystal-like with

periodic structure bridging between the wall for densities above about

0.95.
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Figure Captions

1) Comparisons of DF ~heory (lines) to full simu.lations13 (symbols). The

upper set of results is at a bulk density of 0.830 and have been shifted

by +1 for clarity. The lower set is at a bulk density of 0.642. The solid

line is uncorrected PRISM-PY input with an HNC field. The long

dashed line is correcced PRISM-PY with an HNC field. The short

dashed line is correc~ed PRISM-PY with a SCF field.

2) Comparison of ideal ‘solid line) and bulk simulated co(k) for differing

densities. (p~Uk=0.211 long dash, p~uk=0.381 short dash, p~Uk=0.642

dotted) The large k region is blown-up in the insert.

3) Equation of state for differing chain sizes. The inverted triangles are

horn bulk liquid simulations for chains of 16 sites, and the triangles,

for 32 sites. The crosses are from simulations13 of 20 site chains

between hard walls 200 apart.

4) Equation of state for differing field types. Three groupings of data are

considered, each offset by +3 for clarity. The top compares field types;

the middle, c(r) types; and the bottom, chain backbone types. The solid

line is the interpolation of bulk liquid equation of state data21’22;the

dashed line is equation of state data from simulations near a hard

wa1113.The fiIled diamonds are the slant c(r) with MS field type and

NN chain backbone results. The triangles are slant-c(r), HNC-field,

NN-chain results; and the inverted triangles are slant-c(r), PY-field,

NN-chain results. The open diamonds are PRISM-tail-c(r), MS-field,
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5)

6)

7)

8)

.

NN-chain results; and the squares are straight-c(r), MS-field, NN-

chain results. The crosses are slant-c(r), MS-field, PN-chain results;

and the circles are slant-c(r), MS-field, FJ-chain results. Results below

~BuIk=0.70are highly overlapped.

The effect of the form of c(r) on the density profiles. All calculations

are for MS fields and NN chains, and occur at ~BUk=0.642. (Solid line –

PRISM-PY corrected, Dashed line – “Slant”, Dotted line – Square well).

Comparison of Monte Carlo simulations13 (sxymbols) with our DF

results. For clarity, ch~ q=O.43 curve has been shifted up by 0.5. AH

calculations are for MS fields and ~“ chains (Solid – PRISM-PY,

Dashed – “Slant”, Dotted – PRISM-Tail). Bulk densities are 0.211,

0.381, 0.642, and 0.830.

Comparison of CMS DF theory (solid line) to WDA DF theory (dashed

line) and Monte Carlo simulations13 [13 ] (circles). CMS DF calculation

is for an MS field, PRISM-Tail form of c(r), and NN chains. The square

is extracted from the equation-of-state interpolation. All values are for

pBti~0.830.

Effect of differing field types on the density profile. (Dotted line –

HNC, Solid line – MS, Dashed line – PY). All calculations are for

slant-c(r)’s and NN chains. All simulations are at p~Uk=0.830.
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9) Effect of compressibility corrections on the density profile. (Dot-dashed

– PRISM-PY corrected, Dotted line – PRISM-PY uncorrected, Solid

line- PRISM-tail ). The symbols are for the full simulation. All

calculations are for X3 fields and NN chains. All values are for

p~Uk=0.830.

10) Differing forms of c(r) in linear space. While the slant (long dashes)

and square well (solid line) differ decidedly, the PRISM-PY corrected

(dotted line) and PRIMS-Tail (short dashes) are quite similar. All

values are from calculations at p~u&=0.830. The insert shows the c(rj’s

times the volume elehent, r2.

Al) The Carnahan-Starling equation of state of hard spheres (line) is

exactly reproduced by the MS field with a “slant” c(r) (filled circles) as

contrasted with the HNC field of the same c(r) (open circles).
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