39 research outputs found

    Physiological Roles of Mammalian Transmembrane Adenylyl Cyclase Isoforms

    Get PDF
    Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors. The transmembrane ACs display varying expression patterns across tissues, giving potential for them having a wide array of physiologic roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform\u27s role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain.

    No full text
    Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients.Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Optimization of a Pyrimidinone Series for Selective Inhibition of Ca2+/Calmodulin-Stimulated Adenylyl Cyclase 1 Activity for the Treatment of Chronic Pain

    No full text
    Adenylyl cyclase type 1 is an emerging target for the treatment of chronic pain that is downstream on the analgesic pathway from the traditional µ-opioid receptor. AC1 is expressed in the central nervous system and critical for signaling in pain sensitization. Behavioral studies have revealed AC1 knockout mice exhibit reduced behavioral pain sensitization responses similar to morphine administration. AC1, and a closely related isoform AC8, are also implicated to have a role in learning and memory signaling processes. However, reports suggest selectively targeting AC1 over AC8 may be a viable strategy to eliminate potential deleterious effects on learning and memory. Our team has carried out cellular screening for inhibitors of AC1 that yielded a pyrazolyl-pyrimidinone scaffold with potency comparable to previously published AC1 inhibitors, selectivity versus AC8, and improved drug-like physicochemical properties. Structure-activity relationship (SAR) studies produced 36 analogs that balanced improvements in potency with cellular IC50 values as low as 0.25 µM and selectivity versus AC8. Prioritized analogs were selective for AC1 compared to other AC isoforms and other common neurological targets. A representative analog was assessed for efficacy in a mouse model of inflammatory pain and displayed modest anti-allodynic effects. This series of compounds represents the most potent and selective inhibitors of Ca2+/Calmodulin-stimulated AC1 activity to date with reduced off-target liabilities and improved drug-like physicochemical properties making them promising lead compounds for the treatment of inflammatory pain
    corecore