96 research outputs found

    Critical values and variation in type I error along chromosomes in the COGA dataset using the applied pseudo-trait method

    Get PDF
    BACKGROUND: By analyzing a "pseudo-trait," a trait not linked or associated with any of the markers tested, the distribution of the test statistic under the null hypothesis can provide the critical value for the appropriate percentile of the distribution. In addition, the anecdotal observation that p-values tend to be more significant near the telomeres was investigated. RESULTS: The applied pseudo-trait (APT) method was applied to the Affymetrix and Illumina SNPs in the Collaborative Study on the Genetics of Alcoholism dataset to determine appropriate critical values for regression of offspring on mid-parent (ROMP) and Haseman-Elston association and linkage analyses, investigating the occurrence of type I errors in different chromosomal locations, and the extent to which the critical values obtained depend on the type of pseudo-trait used. CONCLUSION: On average, the 5 percentile critical values obtained for this study were less than the expected 0.05. The distribution of p-values does not seem to depend on chromosomal position for ROMP association analysis methods, but does in some cases for Haseman-Elston linkage analysis. Results vary with different pseudo-traits

    Genetic associations with childhood brain growth, defined in two longitudinal cohorts

    Get PDF
    Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 × 10-9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study

    Comparison of year-of-exam- and age-matched estimates of heritability in the Framingham Heart Study data

    Get PDF
    Several different approaches can be used to examine generational and temporal trends in family studies. The measurement of offspring and parents can be made over a short period of time with parents and offspring having quite different ages, or measurements can be made at the same ages but with decades between parent and offspring measures. A third approach, used in the Framingham Heart Study, has repeated examinations across a broad range of age and time, and provides a unique opportunity to compare these approaches. Parents and offspring were matched both on (year of exam) and on age. Heritability estimates for systolic blood pressure, body mass index, height, weight, cholesterol, and glucose were obtained by regressing offspring on midparent values with and without adjustment for age. Higher estimates of heritability were obtained for age-matched than for year-of-exam-matched data for all traits considered. For most traits, estimates of the heritability of the change over time (slope) of the trait were near zero. These results suggest that the optimal design to identify genetic effects in traits with large age-related effects may be to measure parents and offspring at similar ages and not to rely on age-adjustment or longitudinal measures to account for these temporal effects

    Old lessons learned anew: family-based methods for detecting genes responsible for quantitative and qualitative traits in the Genetic Analysis Workshop 17 mini-exome sequence data

    Get PDF
    Family-based study designs are again becoming popular as new next-generation sequencing technologies make whole-exome and whole-genome sequencing projects economically and temporally feasible. Here we evaluate the statistical properties of linkage analyses and family-based tests of association for the Genetic Analysis Workshop 17 mini-exome sequence data. Based on our results, the linkage methods using relative pairs or nuclear families had low power, with the best results coming from variance components linkage analysis in nuclear families and Elston-Stewart model-based linkage analysis in extended pedigrees. For family-based tests of association, both ASSOC and ROMP performed well for genes with large effects, but ROMP had the advantage of not requiring parental genotypes in the analysis. For the linkage analyses we conclude that genome-wide significance levels appear to control type I error well but that “suggestive” significance levels do not. Methods that make use of the extended pedigrees are well powered to detect major loci segregating in the families even when there is substantial genetic heterogeneity and the trait is mainly polygenic. However, large numbers of such pedigrees will be necessary to detect all major loci. The family-based tests of association found the same major loci as the linkage analyses and detected low-frequency loci with moderate effect sizes, but control of type I error was not as stringent

    Long-term Mortality in HIV-Positive Individuals Virally Suppressed for >3 Years With Incomplete CD4 Recovery

    Get PDF
    Virally suppressed HIV-positive individuals on combination antiretroviral therapy who do not achieve a CD4 count >200 cells/µL have substantially increased long-term mortality. The increased mortality was seen across different patient groups and for all causes of deat

    Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

    Get PDF
    Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention
    corecore