3 research outputs found

    Impact of aging on animal models of Parkinson's disease

    Get PDF
    Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models

    A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson's disease

    Get PDF
    The dual-hit hypothesis of Parkinson's disease (PD) originally postulated that a neurotropic pathogen leads to formation of alpha-synuclein pathology in the olfactory bulb (OB) and dorsal motor nucleus of the vagus (DMV) and then invades the brain from these two entry points. Little work has been conducted to validate an important underlying premise for the dual-hit hypothesis, namely that the initial Lewy pathology does arise simultaneously in the OB and the enteric nervous system (ENS) plexuses and DMV at the earliest disease stage. We conducted a focused re-analysis of two postmortem datasets, which included large numbers of mild Lewy body disease (LBD) cases. We found that cases with alpha-synuclein pathology restricted to the peripheral autonomic nervous system and/or lower brainstem (early body-first LBD cases) very rarely had any OB pathology, suggesting that Lewy pathology commonly arises in the ENS without concomitant involvement of the OB. In contrast, cases with mild amygdala-predominant Lewy pathology (early brain-first LBD cases) nearly always showed OB pathology. This is compatible with the first pathology being triggered in the OB or amygdala followed by secondary spreading to connected structures, but without early involvement of the ENS or lower brainstem. These observations support that the pathologic process starts in either the olfactory bulb or the ENS, but rarely in the olfactory bulb and gut simultaneously. More studies on neuropathological datasets are warranted to reproduce these findings. The agreement between the revised single-hit hypothesis and the recently proposed brain-first vs. body-first model of LBD is discussed.Peer reviewe

    Distribution of cholinergic nerve terminals in the aged human brain measured with [18F]FEOBV PET and its correlation with histological data

    Get PDF
    Introduction: [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. Materials and methods: [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. Results: Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. Discussion: Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo
    corecore