9 research outputs found

    Cardiac Function, Perfusion, Metabolism, and Innervation following Autologous Stem Cell Therapy for Acute ST-Elevation Myocardial Infarction. A FINCELL-INSIGHT Sub-Study with PET and MRI

    Get PDF
    Purpose: Beneficial mechanisms of bone marrow cell (BMC) therapy for acute ST-segment elevation myocardial infarct (STEMI) are largely unknown in humans. Therefore, we evaluated the feasibility of serial positron emission tomography (PET) and MRI studies to provide insight into the effects of BMCs on the healing process of ischemic myocardial damage. Methods: Nineteen patients with successful primary reteplase thrombolysis (mean 2.4 h after symptoms) for STEMI were randomized for BMC therapy (2.9 × 106 CD34+ cells) or placebo after bone marrow aspiration in a double-blind, multi-center study. Three days post-MI, coronary angioplasty, and paclitaxel eluting stent implantation preceded either BMC or placebo therapy. Cardiac PET and MRI studies were performed 7–12 days after therapies and repeated after 6 months, and images were analyzed at a central core laboratory. Results: In BMC-treated patients, there was a decrease in [11C]-HED defect size (−4.9 ± 4.0 vs. −1.6 ± 2.2%, p = 0.08) and an increase in [18F]-FDG uptake in the infarct area at risk (0.06 ± 0.09 vs. −0.05 ± 0.16, p = 0.07) compared to controls, as well as less left ventricular dilatation (−4.4 ± 13.3 vs. 8.0 ± 16.7 mL/m2, p = 0.12) at 6 months follow-up. However, BMC treatment was inferior to placebo in terms of changes in rest perfusion in the area at risk (−0.09 ± 0.17 vs. 0.10 ± 0.17, p = 0.03) and infarct size (0.4 ± 4.2 vs. −5.1 ± 5.9 g, p = 0.047), and no effect was observed on ejection fraction (p = 0.37). Conclusion: After the acute phase of STEMI, BMC therapy showed only minor trends of long-term benefit in patients with rapid successful thrombolysis. There was a trend of more decrease in innervation defect size and enhanced glucose metabolism in the infarct-related myocardium and also a trend of less ventricular dilatation in the BMC-treated group compared to placebo. However, no consistently better outcome was observed in the BMC-treated group compared to placebo

    Trimetazidine Reduces Endogenous Free Fatty Acid Oxidation

    Get PDF
    INTRODUCTION: The metabolic modulator trimetazidine (TMZ) has been suggested to induce a metabolic shift from myocardial fatty acid oxidation (FAO) to glucose utilization, but this mechanism remains unproven in humans. The oxidation of plasma derived FA is commonly measured in humans, whereas the contribution of FA from triglycerides stored in the myocardium has been poorly characterized. AIMS: To verify the hypothesis that TMZ induces a metabolic shift, we combined positron emission tomography (PET) and magnetic resonance spectroscopy ((1)H-MRS) to measure myocardial FAO from plasma and intracellular lipids, and myocardial glucose metabolism. Nine obese subjects were studied before and after 1 month of TMZ treatment. Myocardial glucose and FA metabolism were assessed by PET with (18)F-fluorodeoxyglucose and (11)C-palmitate. (1)H-MRS was used to measure myocardial lipids, the latter being integrated into the PET data analysis to quantify myocardial triglyceride turnover. RESULTS: Myocardial FAO derived from intracellular lipids was at least equal to that of plasma FAs (P = NS). BMI and cardiac work were positively associated with the oxidation of plasma derived FA (P ≤ 0.01). TMZ halved total and triglyceride-derived myocardial FAO (32.7 ± 8.0 to 19.6 ± 4.0 μmol/min and 23.7 ± 7.5 to 10.3 ± 2.7 μmol/min, respectively; P ≤ 0.05). These changes were accompanied by increased cardiac efficiency since unchanged LV work (1.6 ± 0.2 to 1.6 ± 0.1 Watt/g × 10(2), NS) was associated with decreased work energy from the intramyocardial triglyceride oxidation (1.6 ± 0.5 to 0.4 ± 0.1 Watt/g × 10(2), P = 0.036). CONCLUSIONS: In obese subjects, we demonstrate that myocardial intracellular triglyceride oxidation significantly provides FA-derived energy for mechanical work. TMZ reduced the oxidation of triglyceride-derived myocardial FAs improving myocardial efficiency

    Effects of cognac on coronary flow reserve and plasma antioxidant status in healthy young men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cardioprotective effects of certain alcoholic beverages are partly related to their polyphenol content, which may improve the vasodilatory reactivity of arteries. Effect of cognac on coronary circulation, however, remains unknown. The purpose of this randomized controlled cross-over study was to determine whether moderate doses of cognac improve coronary reactivity as assessed with cold pressor testing (CPT) and coronary flow reserve (CFR) measument.</p> <p>Methods</p> <p>Study group consisted of 23 subjects. Coronary flow velocity and epicardial diameter was assessed using transthoracic echocardiography at rest, during CPT and adenosine infusion-derived CFR measurements before drinking, after a moderate (1.2 ± 0.1 dl) and an escalating high dose (total amount 2.4 ± 0.3 dl) of cognac. To explore the bioavailability of antioxidants, the antioxidant contents of cognac was measured and the absorption from the digestive tract was verified by plasma antioxidant capacity determination.</p> <p>Results</p> <p>Serum alcohol levels increased to 1.2 ± 0.2‰ and plasma antioxidant capacity from 301 ± 43.9 μmol/l to 320 ± 25.0 μmol/l by 7.6 ± 11.8%, (p = 0.01) after high doses of cognac. There was no significant change in flow velocity during CPT after cognac ingestion compared to control day. CFR was 4.4 ± 0.8, 4.1 ± 0.9 (p = NS), and 4.5 ± 1.2 (p = NS) before drinking and after moderate and high doses on cognac day, and 4.5 ± 1.4, and 4.0 ± 1.2 (p = NS) on control day.</p> <p>Conclusion</p> <p>Cognac increased plasma antioxidant capacity, but it had no effect on coronary circulation in healthy young men.</p> <p>Trial Registration</p> <p>NCT00330213</p

    Individual changes in hyperemia to baseline ratio of flow velocity in cold pressor test (CPT)

    No full text
    before cognac [before], after a moderate dose (ethanol 0.5 g/kg) [dose1] and a high dose (ethanol 1.0 g/kg) [dose2]. Control 1 corresponds to the first measurement on a control day. Control 2 corresponds to the measurement carried out 2 h after Control 1.<p><b>Copyright information:</b></p><p>Taken from "Effects of cognac on coronary flow reserve and plasma antioxidant status in healthy young men"</p><p>http://www.cardiovascularultrasound.com/content/6/1/25</p><p>Cardiovascular Ultrasound 2008;6():25-25.</p><p>Published online 3 Jun 2008</p><p>PMCID:PMC2427009.</p><p></p

    Individual changes in coronary flow velocity reserve (CFR) before cognac before, after a moderate dose (ethanol 0

    No full text
    5 g/kg) [dose1] and a high dose (ethanol 1.0 g/kg) [dose2]. Control 1 corresponds to the first measurement on a control day. Control 2 corresponds to the measurement carried out 2 h after Control 1.<p><b>Copyright information:</b></p><p>Taken from "Effects of cognac on coronary flow reserve and plasma antioxidant status in healthy young men"</p><p>http://www.cardiovascularultrasound.com/content/6/1/25</p><p>Cardiovascular Ultrasound 2008;6():25-25.</p><p>Published online 3 Jun 2008</p><p>PMCID:PMC2427009.</p><p></p
    corecore