7 research outputs found

    Long-term variation study of fine-mode particle size and regional characteristics using AERONET data

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).To identify the long-term trend of particle size variation, we analyzed aerosol optical depth (AOD, τ) separated as dust (τD) and coarse-(τPC) and fine-pollution particles (τPF) depending on emission sources and size. Ångström exponent values are also identified separately as total and fine-mode particles (αT and αPF). We checked these trends in various ways; (1) first-order linear regression analysis of the annual average values, (2) percent variation using the slope of linear regression method, and (3) a reliability analysis using the Mann–Kendall (MK) test. We selected 17 AERONET sun/sky radiometer sites classified into six regions, i.e., Europe, North Africa, the Middle East, India, Southeast Asia, and Northeast Asia. Although there were regional differences, τ decreased in Europe and Asian regions and increased in the Middle East, India, and North Africa. Values of τPC and τPF, show that aerosol loading caused by non-dust aerosols decreased in Europe and Asia and increased in India. In particular, τPF considerably decreased in Europe and Northeast Asia (95% confidential levels in MK-test), and τPC decreased in Northeast Asia (Z-values for Seoul and Osaka are −2.955 and −2.306, respectively, statistically significant if |z| ≥ 1.96). The decrease in τPC seems to be because of the reduction of primary and anthropogenic emissions from regulation by air quality policies. The meaningful result in this paper is that the particle size became smaller, as seen by values of αT that decreased by −3.30 to −30.47% in Europe, North Africa, and the Middle East because αT provides information on the particle size. Particle size on average became smaller over India and Asian regions considered in our study due to the decrease in coarse particles. In particular, an increase of αPF in most areas shows the probability that the average particle size of fine-mode aerosols became smaller in recent years. We presumed the cause of the increase in αT is because relatively large-sized fine-mode particles were eliminated due to air quality policies.Peer reviewe

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Possible detection of atmospheric bioaerosol via LiDAR: a wavelength-based simulation study

    No full text
    Abstract This study explores potential of LiDAR technology to rapidly detect aerosolized biological terror agents in the atmosphere. It assesses the application by simulating extinction coefficients and the Ångström exponent at various wavelengths (266, 1064, 1571, and 2000 nm), focusing on differentiating bioaerosols from typical atmospheric particles. The simulation analysis evaluates changes in aerosol distributions and related extinction coefficient and Ångström exponent shifts under clean, normal, and bad atmospheric conditions. The findings indicate that the 1064 nm wavelength effectively detects bioaerosol presence, with a combination of 1064 nm and 1571 nm providing optimal Ångström exponent use for particle size differentiation. This dual-wavelength approach is highlighted as a practical method for bioaerosol detection, showcasing a significant sensitivity to variations in particle quantity and size, which are critical in biological threat scenarios. In conclusion, the study offers guidance for selecting LiDAR wavelengths for biological agent detection systems. While providing a theoretical framework for practical applications, it also underlines the need for further experimental work to confirm findings and fine-tune technology for real-world monitoring and threat management. This research contributes to the development of effective monitoring strategies against the backdrop of biological terror threats. Graphical Abstrac

    Estimation of Aerosol Extinction Coefficient Using Camera Images and Application in Mass Extinction Efficiency Retrieval

    No full text
    In this study, we attempted to calculate the extinction parameters of PM2.5 using images from a commercial camera. The photo pixels provided information on the characteristics of the objects (i.e., the reflectivity, transmittance, or extinction efficiency) and ambient brightness. Using the RGB values of pixels, we calculated the extinction coefficient and efficiency applied to the mass concentration of PM2.5. The calculated extinction coefficient of PM2.5 determined from the camera images had a higher correlation with the PM2.5 mass concentration (R2 = 0.7) than with the visibility data, despite the limited mass range. Finally, we identified that the method of calculating extinction parameters using the effective wavelength of RGB images could be applied to studies of changes in the atmosphere and aerosol characteristics. The mass extinction efficiency of PM2.5, derived from images, and the mass concentration of PM2.5 was (10.8 ± 6.9) m2 g−1, which was higher than the values obtained in Northeast Asia by previous studies. We also confirmed that the dry extinction efficiency of PM2.5, applied with a DRH of 40%, was reduced to (6.9 ± 5.0) m2 g−1. The extinction efficiencies of PM2.5, calculated in this study, were higher than those reported in previous other studies. We inferred that high extinction efficiency is related to changes in size or the composition of aerosols; therefore, an additional long-term study must be conducted

    A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea

    No full text
    Fine particulate matter (PM) release is regulated by environmental policies in most countries. This study investigated long–term trends in the mass extinction efficiency (Qe) of aerosols in Northeast Asia. For this purpose, the Qe was calculated using visibility, PM2.5 recorded between 2015 and 2020, and PM10 recorded between 2001 and 2020 at eight Korean sites. The Qe of PM10 (Qe,10) showed an increasing trend with 0.06~0.22 (m2/g)/yr in seven cities except for Jeju. The Qe of PM2.5 (Qe,2.5) also showed an increasing trend with 0.28–2.47 (m2/g)/yr in all cities. In this study, PM10 and PM2.5, were divided into low, moderate, and high concentrations, and the Qe value change by year was examined. Qe,10 showed a tendency to decrease at low concentrations (19–21 μg/m3). However, at moderate (69–71 μg/m3) and high concentrations (139–141 μg/m3), Qe,10 increased in most regions. Qe,2.5 showed an increasing trend at low concentration (9–11 μg/m3), moderate concentration (29–31 μg/m3), and high concentration (69–71 μg/m3), except for Suwon and Pohang, where data were insufficient for analysis. Both Qe,10 and Qe,2.5 showed an increasing trend. The increase in Qe indicated that the visibility-impairing effect of PM can increase even if the same concentration of PM is present. The visibility-impairing effects of PM vary based on the composition, size and other characteristics of the particles in the atmosphere at a given point in time and not simply the quantity of particles. This means that reducing the quantity of particles does not reliably produce a proportionate improvement in visibility. Air quality policies must take the variable nature of PM particles and their effect on visibility into account so that more consistent improvements in air quality can be achieved

    A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea

    No full text
    Fine particulate matter (PM) release is regulated by environmental policies in most countries. This study investigated long–term trends in the mass extinction efficiency (Qe) of aerosols in Northeast Asia. For this purpose, the Qe was calculated using visibility, PM2.5 recorded between 2015 and 2020, and PM10 recorded between 2001 and 2020 at eight Korean sites. The Qe of PM10 (Qe,10) showed an increasing trend with 0.06~0.22 (m2/g)/yr in seven cities except for Jeju. The Qe of PM2.5 (Qe,2.5) also showed an increasing trend with 0.28–2.47 (m2/g)/yr in all cities. In this study, PM10 and PM2.5, were divided into low, moderate, and high concentrations, and the Qe value change by year was examined. Qe,10 showed a tendency to decrease at low concentrations (19–21 μg/m3). However, at moderate (69–71 μg/m3) and high concentrations (139–141 μg/m3), Qe,10 increased in most regions. Qe,2.5 showed an increasing trend at low concentration (9–11 μg/m3), moderate concentration (29–31 μg/m3), and high concentration (69–71 μg/m3), except for Suwon and Pohang, where data were insufficient for analysis. Both Qe,10 and Qe,2.5 showed an increasing trend. The increase in Qe indicated that the visibility-impairing effect of PM can increase even if the same concentration of PM is present. The visibility-impairing effects of PM vary based on the composition, size and other characteristics of the particles in the atmosphere at a given point in time and not simply the quantity of particles. This means that reducing the quantity of particles does not reliably produce a proportionate improvement in visibility. Air quality policies must take the variable nature of PM particles and their effect on visibility into account so that more consistent improvements in air quality can be achieved

    Long-Term Variation Study of Fine-Mode Particle Size and Regional Characteristics Using AERONET Data

    No full text
    To identify the long-term trend of particle size variation, we analyzed aerosol optical depth (AOD, τ) separated as dust (τD) and coarse-(τPC) and fine-pollution particles (τPF) depending on emission sources and size. Ångström exponent values are also identified separately as total and fine-mode particles (αT and αPF). We checked these trends in various ways; (1) first-order linear regression analysis of the annual average values, (2) percent variation using the slope of linear regression method, and (3) a reliability analysis using the Mann–Kendall (MK) test. We selected 17 AERONET sun/sky radiometer sites classified into six regions, i.e., Europe, North Africa, the Middle East, India, Southeast Asia, and Northeast Asia. Although there were regional differences, τ decreased in Europe and Asian regions and increased in the Middle East, India, and North Africa. Values of τPC and τPF, show that aerosol loading caused by non-dust aerosols decreased in Europe and Asia and increased in India. In particular, τPF considerably decreased in Europe and Northeast Asia (95% confidential levels in MK-test), and τPC decreased in Northeast Asia (Z-values for Seoul and Osaka are −2.955 and −2.306, respectively, statistically significant if |z| ≥ 1.96). The decrease in τPC seems to be because of the reduction of primary and anthropogenic emissions from regulation by air quality policies. The meaningful result in this paper is that the particle size became smaller, as seen by values of αT that decreased by −3.30 to −30.47% in Europe, North Africa, and the Middle East because αT provides information on the particle size. Particle size on average became smaller over India and Asian regions considered in our study due to the decrease in coarse particles. In particular, an increase of αPF in most areas shows the probability that the average particle size of fine-mode aerosols became smaller in recent years. We presumed the cause of the increase in αT is because relatively large-sized fine-mode particles were eliminated due to air quality policies
    corecore