850 research outputs found

    Gamma-ray bursts from magnetized collisionally-heated jets

    Full text link
    Jets producing gamma-ray bursts (GRBs) are likely to carry a neutron component that drifts with respect to the proton component. The neutron-proton collisions strongly heat the jet and generate electron-positron pairs. We investigate radiation produced by this heating using a new numerical code. Our results confirm the recent claim that collisional heating generates the observed Band-type spectrum of GRBs. We extend the model to study the effects of magnetic fields on the emitted spectrum. We find that the spectrum peak remains near 1 MeV for the entire range of the magnetization parameter 0<ϵB<20<\epsilon_B<2 that is explored in our simulations. The low-energy part of the spectrum softens with increasing ϵB\epsilon_B, and a visible soft excess appears in the keV band. The high-energy part of the spectrum extends well above the GeV range and can contribute to the prompt emission observed by Fermi/LAT. Overall, the radiation spectrum created by the collisional mechanism appears to agree with observations, with no fine-tuning of parameters.Comment: 13 pages, 6 figures, accepted to Ap

    Phase Retrieval for Sparse Signals: Uniqueness Conditions

    Get PDF
    In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then is: "Under which conditions can we uniquely recover the signal of interest from its measured magnitudes?" In this paper, we assume the measured signal to be sparse. This is a natural assumption in many applications, such as X-ray crystallography, speckle imaging and blind channel estimation. In this work, we derive a sufficient condition for the uniqueness of the solution of the phase retrieval (PR) problem for both discrete and continuous domains, and for one and multi-dimensional domains. More precisely, we show that there is a strong connection between PR and the turnpike problem, a classic combinatorial problem. We also prove that the existence of collisions in the autocorrelation function of the signal may preclude the uniqueness of the solution of PR. Then, assuming the absence of collisions, we prove that the solution is almost surely unique on 1-dimensional domains. Finally, we extend this result to multi-dimensional signals by solving a set of 1-dimensional problems. We show that the solution of the multi-dimensional problem is unique when the autocorrelation function has no collisions, significantly improving upon a previously known result.Comment: submitted to IEEE TI

    Perspectives on Beam-Shaping Optimization for Thermal-Noise Reduction in Advanced Gravitational-Wave Interferometric Detectors: Bounds, Profiles, and Critical Parameters

    Get PDF
    Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower-bounds for the various thermal noise constituents are obtained and compared with the current status (Gaussian beams) and trends ("mesa" beams), indicating fairly ample margins for further reduction. In this framework, the effective dimension of the related optimization problem, and its relationship to the critical design parameters are identified, physical-feasibility and model-consistency issues are considered, and possible additional requirements and/or prior information exploitable to drive the subsequent optimization process are highlighted.Comment: 12 pages, 9 figures, 2 table

    The Pavlov Department of Physiology: A Scientific History

    Get PDF
    Se sigue la aventura científica del Departamento de Fisiología Ivan Pavlov desde los trabajos pioneros de Pavlov y sus discípulos sobre la “salivación psíquica” hasta los tiempos de la Estación Biológica de Koltushi. Se describe el desarrollo del Departamento tras la muerte de Pavlov y se comentan las líneas de investigación de los actuales laboratorios (Neurobiología de las Funciones Integradoras del Cerebro, Psicofisiología de las Emociones y Corrección Neurodinámica de la Patología Psiconeurológica).The scientific adventure of the Ivan Pavlov Department of Physiology is traced from Pavlov’s and his students pioneer work on “psychic salivation” to the times of the Biological Station at Koltushi. The development of the Department after Pavlov’s death is described and the research trends of the three present laboratories (Neurobiology of Integrative Brain Functions, Psychophysiology of Emotions, and Neurodynamic Correction of Psycho Neurological Pathology) are discussed

    On the Analytic Structure of a Family of Hyperboloidal Beams of Potential Interest for Advanced LIGO

    Get PDF
    For the baseline design of the advanced Laser Interferometer Gravitational-wave Observatory (LIGO), use of optical cavities with non-spherical mirrors supporting flat-top ("mesa") beams, potentially capable of mitigating the thermal noise of the mirrors, has recently drawn a considerable attention. To reduce the severe tilt-instability problems affecting the originally conceived nearly-flat, "Mexican-hat-shaped" mirror configuration, K. S. Thorne proposed a nearly-concentric mirror configuration capable of producing the same mesa beam profile on the mirror surfaces. Subsequently, Bondarescu and Thorne introduced a generalized construction that leads to a one-parameter family of "hyperboloidal" beams which allows continuous spanning from the nearly-flat to the nearly-concentric mesa beam configurations. This paper is concerned with a study of the analytic structure of the above family of hyperboloidal beams. Capitalizing on certain results from the applied optics literature on flat-top beams, a physically-insightful and computationally-effective representation is derived in terms of rapidly-converging Gauss-Laguerre expansions. Moreover, the functional relation between two generic hyperboloidal beams is investigated. This leads to a generalization (involving fractional Fourier transform operators of complex order) of some recently discovered duality relations between the nearly-flat and nearly-concentric mesa configurations. Possible implications and perspectives for the advanced LIGO optical cavity design are discussed.Comment: 9 pages, 6 figures, typos corrected, Eqs. (24) and (26) change

    Dynamo Action in the Solar Convection Zone and Tachocline: Pumping and Organization of Toroidal Fields

    Full text link
    We present the first results from three-dimensional spherical shell simulations of magnetic dynamo action realized by turbulent convection penetrating downward into a tachocline of rotational shear. This permits us to assess several dynamical elements believed to be crucial to the operation of the solar global dynamo, variously involving differential rotation resulting from convection, magnetic pumping, and amplification of fields by stretching within the tachocline. The simulations reveal that strong axisymmetric toroidal magnetic fields (about 3000 G in strength) are realized within the lower stable layer, unlike in the convection zone where fluctuating fields are predominant. The toroidal fields in the stable layer possess a striking persistent antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. The associated mean poloidal magnetic fields there have a clear dipolar geometry, but we have not yet observed any distinctive reversals or latitudinal propagation. The presence of these deep magnetic fields appears to stabilize the sense of mean fields produced by vigorous dynamo action in the bulk of the convection zone.Comment: 4 pages, 3 color figures (compressed), in press at ApJ

    Synthesis and Theoretical Studies of Aromatic Azaborines

    Get PDF
    Organoboron compounds are well known for their use as synthetic building blocks in several significant reactions, e.g., palladium-catalyzed Suzuki-Miyaura cross-coupling. As an element, boron is fascinating; as part of a molecule it structurally resembles a three-valent atom, but if there is a lone pair of electrons nearby, the boron atom’s empty p-orbital may capture the lone pair and form a covalent bond. This is the main aspect that is challenging chemistry during the synthesis of boron containing molecules and may lead into unexpected reactions and products. To study this, we synthesized and studied novel aromatic azaborines for better understanding of their structures and reactions. Here, we report a one-pot method for the synthesis of substituted aromatic azaborines and computational studies of their structure to explain their observed chemical properties

    Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame:A Survey

    Get PDF
    • …
    corecore