11 research outputs found

    HLA-DO modulates the diversity of the MHC-II self-peptidome

    Get PDF
    Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a non-classical MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes have been contradictory. To understand how DO modulates MHC-II antigen presentation, we characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset of peptides presented only when DO was expressed. Antigen-presenting cells express another non-classical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, to enhance self-tolerance to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during an immune response

    Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions

    Get PDF
    OPCML, a tumor suppressor gene, is frequently silenced epigenetically in ovarian and other cancers. Here we report, by analysis of databases of tumor sequences, the observation of OPCML somatic missense mutations from various tumor types and the impact of these mutations on OPCML function, by solving the X-ray crystal structure of this glycoprotein to 2.65 A resolution. OPCML consists of an extended arrangement of three immunoglobulin-like domains and homodimerizes via a network of contacts between membrane-distal domains. We report the generation of a panel of OPCML variants with representative clinical mutations and demonstrate clear phenotypic effects in vitro and in vivo including changes to anchorage-independent growth, interaction with activated cognate receptor tyrosine kinases, cellular migration, invasion in vitro and tumor growth in vivo. Our results suggest that clinically occurring somatic missense mutations in OPCML have the potential to contribute to tumorigenesis in a variety of cancers

    A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice

    Get PDF
    OBJECTIVE - To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent alloand autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS - Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS - BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS - The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes

    The non-classical MHC-II molecule DO regulates diversity of the immunopeptidome and selection of the CD4 regulatory T cell lineage

    Get PDF
    Presentation of antigenic peptides on MHC-II molecules is essential for induction of tolerance to self and for effective immunity against foreign pathogens. The non- classical MHC-II molecule DO (HLA-DO in humans, H2-O in mice) functions in selection of MHC-II epitopes by competitively inhibiting the peptide exchange factor DM. Previous studies have suggested a role for DO in development of autoimmunity and in the immune response to retroviral infection, presumably via modulation of the MHC-II peptidome, but the precise effect of DO has been difficult to discern. Through characterization of the full spectrum of peptides from DO-sufficient and DO-deficient cells, we demonstrate that DO functions to broaden the diversity of peptide species presented on MHC-II. DO is regulated differently from other components of the MHC-II processing machinery, with expression limited to B cell and dendritic cell subsets, as well as thymic epithelial cells, suggesting a role for DO in mediating central tolerance. In a mouse model lacking DO, we show that selection of T regulatory cells (Tregs) is increased and that DO- deficient Tregs are more activated and exert greater suppressive capacity. Despite augmented Treg function, mice lacking DO display enhanced susceptibility to autoimmunity, with altered germinal center (GC) Tregs and B cells indicative of an aberrant GC reaction. These data suggest that DO expression serves to fine-tune the immunopeptidome in order to promote self-tolerance to a wide spectrum of epitopes and to select a Treg population with appropriate specificity for self- antigens

    Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A(b) in C57BL/6 Mouse Thymus

    Get PDF
    Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-A(b) presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of \u3c 1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-A(b) binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues

    Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes

    Get PDF
    Programmed death cell 1 (PD-1) is an inhibitor of T cell activation and is also functionally linked to glycolysis. We hypothesized that PD-1 expression is defective in activated T cells from children with type 1 diabetes (T1D), resulting in abnormal T cell glucose metabolism.In this pilot study, we enrolled children with new onset T1D within 2 weeks of diagnosis (T1D), unaffected siblings of T1D (SIBS), unaffected, unrelated children (CTRL), children with new onset, and untreated Crohn disease (CD). We repeated the assays 4-6 months post-diagnosis in T1D (T1D follow up). We analyzed anti-CD3/-CD28-stimulated peripheral blood mononuclear cells (PBMC) subsets for PD-1 expression by flow cytometry at baseline and after 24 h in culture. We measured cytokines in the culture medium by multiplex ELISA and glycolytic capacity with a flux analyzer.We enrolled 37 children. T cells derived from subjects with T1D had decreased PD-1 expression compared to the other study groups. However, in T1D follow-up T cells expressed PD-1 similarly to controls, but had no differences in PBMC cytokine production. Nonetheless, T1D follow up PBMCs had enhanced glycolytic capacity compared to T1D.Activated T cells from T1D fail to upregulate PD-1 upon T-cell receptor stimulation, which may contribute to the pathogenesis of T1D. T1D follow up PBMC expression of PD-1 normalizes, together with a significant increase in glycolysis compared to T1D. Thus, insulin therapy in T1D children is associated with normal PD1 expression and heightened glycolytic capacity in PBMC
    corecore