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Abstract 

 
 

Presentation of antigenic peptides on MHC-II molecules is essential for induction 

of tolerance to self and for effective immunity against foreign pathogens. The non-

classical MHC-II molecule DO (HLA-DO in humans, H2-O in mice) functions in 

selection of MHC-II epitopes by competitively inhibiting the peptide exchange 

factor DM. Previous studies have suggested a role for DO in development of 

autoimmunity and in the immune response to retroviral infection, presumably via 

modulation of the MHC-II peptidome, but the precise effect of DO has been 

difficult to discern. Through characterization of the full spectrum of peptides from 

DO-sufficient and DO-deficient cells, we demonstrate that DO functions to broaden 

the diversity of peptide species presented on MHC-II. DO is regulated differently 

from other components of the MHC-II processing machinery, with expression 

limited to B cell and dendritic cell subsets, as well as thymic epithelial cells, 

suggesting a role for DO in mediating central tolerance. In a mouse model lacking 

DO, we show that selection of T regulatory cells (Tregs) is increased and that DO-

deficient Tregs are more activated and exert greater suppressive capacity. Despite 

augmented Treg function, mice lacking DO display enhanced susceptibility to 

autoimmunity, with altered germinal center (GC) Tregs and B cells indicative of an 

aberrant GC reaction. These data suggest that DO expression serves to fine-tune the 

immunopeptidome in order to promote self-tolerance to a wide spectrum of 

epitopes and to select a Treg population with appropriate specificity for self-

antigens. 
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CHAPTER I 

Overview of MHC-II presentation 

Presentation of peptide antigens by class II Major Histocompatibility Complex 

(MHC-II) molecules is critical for maintenance of self-tolerance and for initiation 

of effective immune responses. Immunological tolerance to antigens presented on 

MHC-II molecules begins at the selection stage of T cell development in the thymus 

and continues in the periphery. CD4 T cells necessarily interact with self-ligands 

presented by MHC-II molecules for positive selection in the thymus as well as 

require tonic stimulation by peripheral MHC-II-peptide complexes for survival. 

During the process of negative selection in the thymus, development of T cells with 

T cell receptor specificities overtly reactive to self is prevented, and cells with 

borderline reactivity are directed into the CD4 T regulatory lineage. A peripheral 

immune response is initiated when antigen-presenting cells (APCs) present 

peptides that alert the adaptive immune system to mount a targeted response against 

invading pathogens. Entry of self and foreign antigens into the endo/lysosomal 

pathway, proteolytic processing, and selection of peptides for presentation are 

influenced by APC type, maturation state, and external environment. Thus, the set 

of peptides presented by MHC-II molecules, known as the MHC-II 

immunopeptidome, is determined by these factors. The nonclassical MHC-II 

molecule DO has been shown to modulate presentation of MHC-II epitopes and 

thereby may affect processes that govern self-tolerance and immunity in which 

MHC-II presentation plays a central role. 
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MHC-II synthesis and peptide loading pathways 

MHC-II molecules are constitutively expressed on professional APCs such as 

dendritic cells, macrophages, and B cells, as well as thymic epithelia, and are 

upregulated on many other cell types by IFN-g. Expression of MHC-II genes is 

primarily regulated by the class II transactivator (CIITA), which necessarily 

interacts with multiple DNA-binding proteins to initiate transcription of MHC-II 

genes and MHC-II antigen processing pathway components6,7. Following 

synthesis of MHC-II a and b subunits in the ER (Figure 1.1), nascent MHC-II 

molecules bind the invariant chain (Ii) protein, allowing for stabilization of the 

MHC heterodimer, spatial restriction of peptide loading, and transport to the 

endocytic compartment for peptide loading8,9. The MHC-II-Ii complex then 

translocates through the Golgi complex into the endocytic pathway by way of a 

dileucine targeting motif present in the cytoplasmic domain of Ii10-12. As 

endocytic vesicles acidify, endolysosomal proteases termed cathepsins acquire 

increased proteolytic activity and cleave the MHC-II-bound invariant chain until 

only a residual peptide (CLIP, or class II-associated invariant chain peptide) 

remains bound in the MHC-II peptide-binding site13-15. Proteins transported into 

the lumen of the endosome unfold and are digested by endosomal proteases to 

allow for MHC-II binding16-19. The nonclassical MHC-II peptide exchange factor 

HLA-DM (H2-M in mice, hereafter referred to as DM) also resides in 

endosomal/lysosomal compartments and catalyzes the removal of CLIP from the 

peptide-binding groove of MHC-II molecules, with resultant exchange of CLIP 

for endosomal peptides20-22. DM can act on other peptides in addition to CLIP, 
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such that multiple cycles of peptide exchange can occur23,24. The DM-MHC-II 

interaction has been shown to be transient25-27, increasing the rates of peptide 

binding to and peptide release from MHC-II without altering the equilibrium 

affinity, consistent with an enzyme-like catalytic activity21,28. Because the 
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Figure 1.1. Antigen processing in tolerance and inflammation. MHC Class II dimers are 
synthesized in the ER and loaded with invariant chain, after which they traffic to the endosome. 
Cathepsins cleave the invariant chain (Ii) to the residual peptide CLIP, which is then removed 
by the peptide exchange factor DM and exchanged for peptides derived from proteolyzed self- 
and foreign antigens. The MHC-II-peptide complex traffics to the cell surface for presentation 
to CD4 T cells. To maintain tolerance in noninflammatory conditions (left panel), the 
immunopeptidome in APCs is comprised of diverse self-peptide antigens acquired through 
extracellular uptake pathways as well as autophagy. Components of the antigen processing 
machinery including the DM inhibitor DO further enhance the diversity of the peptides 
presented. Upon activation and initiation of an inflammatory response (right panel), antigen 
sampling is reduced, endosomal proteases are redistributed to late endosomes, DO expression 
is downregulated, and MHC-II expression is substantially increased. (The effects of 
inflammation on the process of autophagy in APCs are incompletely understood.) During 
inflammation, these changes result in greater efficiency of MHC-II antigen presentation as well 
as reduced diversity in the MHC-II peptidome in an immune response. 
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efficiency of DM-mediated catalysis varies for different MHC-II-peptide 

complexes, the net effect of DM activity is to exchange peptides that interact 

more weakly with MHC-II for those that interact with greater affinity. The 

precise features of the MHC-II-peptide interaction that are targeted by DM are 

controversial, with recent work focusing on conformational flexibility as an 

important determinant4,20,29-31. Overall, DM thus serves an editing function, 

selecting for peptides with optimal interaction with MHC-II. DM activity is 

competitively inhibited by another nonclassical MHC-II molecule, HLA-DO 

(H2-O in mice, hereafter referred to as DO), which tightly binds to DM in the 

endoplasmic reticulum and traffics together with DM into the endocytic pathway, 

preventing a fraction of the DM from interacting with MHC-II25,28,32-37. 

Following removal of CLIP and loading of antigenic peptide, the MHC-II-

peptide complex then traffics to the plasma membrane for presentation at the cell 

surface to CD4 T cells. While the basic mechanism of peptide loading appears to 

be shared by all cells that constitutively express MHC-II, the acquisition and 

processing of MHC-II antigens can occur via diverse pathways (Figure 1.1) to 

promote presentation of epitopes from a broad range of antigens. 

 

Acquisition of antigens for processing in MHC-II pathways 

MHC-II-expressing cells acquire antigen by distinct cellular processes that allow 

professional APCs to sample their external environment. Classically, extracellular 

proteins were thought to predominate as antigenic sources in MHC-II presentation, 

but many studies have demonstrated that the MHC-II peptidome largely consists of 
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peptides derived from endogenous – rather than exogenous – source proteins38-40. 

These endogenous peptides can derive from proteins expressed at the plasma 

membrane and in endo/lysosomal compartments, as expected from the location of 

the MHC-II loading machinery in the endocytic pathway, but peptides from other 

intracellular compartments such as the nucleus, mitochondria, ER/Golgi, and 

cytosol also are found in abundance. The predominance of endogenous peptides 

has been shown to persist in inflammatory conditions41-43 and thus may have 

implications for maintenance of tolerance during an immune response. The fact that 

very low fractional occupancy of MHC-II by pathogen-derived peptides in virally-

infected cells41, which is also observed for MHC-I peptides44, is sufficient to elicit 

effective immunity demonstrates that minimal shifts in the immunopeptidome can 

have important immunological consequences. 

 

Acquisition and processing of MHC-II antigens 

Capture of extracellular antigen occurs via multiple processes with varying degrees 

of efficiency in different types of antigen-presenting cells. Canonically, acquisition 

of antigen for MHC-II presentation occurs by different modes of endocytosis, 

followed by processing of antigens in progressively more acidic intracellular 

compartments. Macropinocytosis, a nonspecific and actin-dependent that allows for 

fluid-phase uptake of extracellular material via invagination of the cell membrane, 

serves as a primary means of exogenous antigen internalization in immature DCs 

and macrophages45-47. Phagocytosis, an additional fundamental uptake mechanism 

that occurs principally in DCs and macrophages, is characterized by internalization 
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of relatively large (>0.3 µm) particulate antigens48 and primarily occurs following 

recognition of surface receptors such as the C-type lectin pattern-recognition 

receptor DEC-205 or the opsonic Fcg receptors49-52. Signal transduction following 

ligation of different phagocytic surface receptors varies but has been shown in all 

cases to culminate in actin polymerization and phagosome formation53. The 

phagosome, derived primarily from the plasma membrane, then fuses with 

lysosomes to form phagolysosomes54. Proteolysis of internalized proteins within 

the phagolysosome is accomplished in DCs by cathepsins and other endosomal 

proteases, while NOX2 is recruited to the phagosomal membrane to regulate 

antigen proteolysis55. B cells, by contrast, principally depend upon receptor-

mediated endocytosis to capture extracellular antigen56-58. Antigen is internalized 

during this process after binding to the B cell receptor (BCR), or to surface Fc or 

complement receptors, after which endocytosis – most often mediated by entry via 

clathrin-coated vesicles – occurs59,60.  

Evidence for acquisition of MHC-II antigenic source proteins via alternate 

or nonconventional pathways has accumulated over the past two decades. Perhaps 

chief among these is the process of autophagy, whereby cytoplasmic components 

are digested by the cell for degradation and processing61. Incorporation of the 

cytosol into autophagosomes was initially described in yeast as the cellular 

response to starvation, and as such, an essential energy source for cell survival62. 

Since its discovery, however, autophagy has been determined to be critical for 

myriad cellular and organismal processes, including aging and development, as 

well as for antigen presentation63-65. All forms of autophagy (macro-, micro-, or 
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chaperone-mediated) intersect with the endocytic pathway and thus deliver nuclear, 

microsomal, and cytoplasmic proteins for presentation on MHC-II66-68. Processing 

of antigens via macroautophagy has been demonstrated to be important in DCs, in 

which constitutive formation of autophagosomes has been shown, as well as in B 

cells, for presentation of both self- and foreign antigens66,69-71. Although antigen 

processing pathways in thymic epithelial cells (TECs) are considerably less well-

examined than in professional APCs, TECs are thought to rely primarily upon 

constitutive macroautophagy to present MHC-II antigens72-74. In medullary TECs 

(mTECs), incorporation of antigens into autophagosomes has been shown to allow 

for presentation of the many tissue-specific antigens under the transcriptional 

control of AIRE75. Antigen transfer via trogocytosis, in which an immune synapse 

forms between cells to mediate intercellular transfer of proteins, has also been 

shown to allow for capture and presentation of MHC-peptide complexes by both 

APCs and non-APCs76-78. In the thymus, peptides presented as a result of 

trogocytosis between DCs and mTECs is posited to aid in increasing presentation 

of rare thymic antigens by MHC-II79-81. While the mechanism of transfer from DCs 

to many cell types remains unclear, MHC-II-peptide uptake by T cells has been 

demonstrated to be mediated via the TCR and the costimulatory molecule CD2882. 

Recycling of MHC-II molecules also serves as an alternative means of presentation 

of MHC-II epitopes; peptide loading on recycled MHC-II following endocytosis 

has been shown to occur in early endosome compartments83-86. Of note, the antigen 

acquisition processes of trogocytosis and recycling in early endosomes in most 

cases seem to be independent of DM and cathepsin activity, such that peptide 
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species loaded or exchanged on recycled or trogocytosed MHC-II may be 

comprised of epitopes absent from the MHC-II peptidome generated by canonical 

pathways83,87,88, although in some cases DM-mediated editing has been observed89. 

Still another mechanism capable of generating antigens presented on MHC-II 

molecules relies on components of MHC-I machinery, including the proteasome, 

TAP, and ERAP90,91; however, the mode of intersection of the MHC-I and MHC-

II processing pathways has not been determined. It has thus become clear that the 

MHC-II immunopeptidome can be influenced by multiple processing pathways that 

serve to present antigens from endogenous and exogenous sources, and that 

canonical MHC-II acquisition and processing is not the sole determinant of the 

MHC-II-bound peptide repertoire. 

 

Source proteins in the MHC-II peptidome 

Recent advances in mass spectrometry technology have significantly improved 

both accuracy and sensitivity of detection of peptides eluted from purified MHC 

proteins, allowing for qualitative and quantitative characterization of MHC 

peptidomes. Mass spectrometry can thus be leveraged as a powerful tool to identify 

source proteins from which MHC-II peptides derive in order to assess effects of 

perturbations in MHC processing such as cellular maturation or infection, and the 

relative contributions of different processing pathways. Increases in the sensitivity 

of mass spectrometry has allowed studies of APCs characterized ex vivo2,43,92, 

likely reflective of in vivo peptidomes, as compared to classical immunopeptidome 

studies of cultured cells. Recent work has demonstrated that the MHC-II peptidome 
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is substantially comprised of peptides derived from nuclear or cytosolic proteins 

(25-55% of total peptides eluted from HLA-DR)2,38, presumably largely due to the 

self-degradative autophagic process. Several studies have quantified peptides 

derived from extracellular source proteins as constituting only ~10-20% of the 

MHC-II peptidome, with the remaining peptides derived from endogenous source 

proteins located in various cellular compartments, including the plasma membrane, 

mitochondria, endosomes or lysosomes, and ER/Golgi2,38-40. A caveat of these 

analyses is that classification of peptides as sourced from endogenous proteins does 

not preclude acquisition of (at least a portion of) these proteins via uptake of 

necrotic or apoptotic cells. Recent work examining source proteins in the 

peptidome of mouse lymphatic fluid compared to the HLA-DR1-bound peptidome 

of splenic dendritic cells posited that lymph-derived epitopes were loaded at the 

surface or in early endosomal compartments based on their sensitivity to DM-

mediated exchange and endosomal digestion, suggesting a DM-independent 

mechanism for presentation of low affinity autoantigens derived from extracellular 

sources2. In the context of infection or inflammation, the MHC-II peptidome has 

been shown to include only a very small fraction of foreign peptide sequences 

present within a much larger set of host-derived sequences, as characterized in the 

settings of experimentally-induced colitis in mice (~0.2% of 2188 total sequences), 

a mouse model of malaria infection (42 malaria-derived out of 372 sequences), or 

vaccinia infection of cultured B cells (1% of the peptidome, as estimated by 

comparing intensities of several hundred peaks)41-43. Further quantitative analysis 

is required to determine the proportion of foreign peptides presented on MHC-II 
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molecules with respect to total peptide component (as compared to the fraction of 

different sequences), but these studies suggest that even during inflammation or 

infection, the MHC-II peptidome largely consists of peptides derived from self.  

 

Implications of MHC-II processing for immune tolerance  

Positive and negative selection of T cells in the thymus depends on interactions of 

developing T cells with local antigen-presenting cells, and so antigen presentation 

events in the thymus play a key role in guiding selection of CD4 T cells as well as 

in development of regulatory CD4 T cells. Differential processing and presentation 

pathways in various cell populations can result in distinct peptidomes in different 

tissues, and antigens produced in this manner present a challenge for central and 

peripheral tolerance mechanisms in the restraint of autoimmunity.  

 

MHC-II presentation in central tolerance 

Somatic gene arrangement of the T cell receptor (TCR) occurs in the thymus and 

generates T cells with diverse specificities for different MHC-II-peptide 

complexes. Presentation of self-ligands on MHC-II in the thymus positively selects 

only those T cells that express TCRs capable of recognizing the peptide-MHC 

complex93. Positive selection is mediated by cortical thymic epithelial cells 

(cTECs), which have been posited to present a unique MHC-II ligandome due to 

proteolytic activities of cathepsin L and thymus-specific serine protease 

(TSSP)79,94,95 (Table 1.1). Evidence for a requirement for distinct peptide species in  
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Table 1.1. Expression of antigen processing components in mouse and human 
APCs. 

Abbreviations: DCs: dendritic cells; GC: germinal center; cTECs: cortical thymic epithelial cells; 
mTECs: medullary thymic epithelial cells; Cat: cathepsin; SPPL2A: signal peptide peptidase-like 
2a; AEP: asparagine endopeptidase; TSSP: thymus-specific serine protease; hu: human; ms: mouse. 
 
aRelative MHC-II expression is estimated based on data in references included. For thymic DCs, no 
published data is available regarding DM and DO expression. 
bProteases in which enzymatic activity is reported are in bold, as are the references that report 
enzymatic activity (demonstrated via active site labeling or through effects on antigen presentation 
of specific epitopes). Of note, endosomal proteases have been shown in many instances to exhibit 
redundancy in their activity and specificity. 

Cell type  MHC-II 
expression 

Endosomal 
proteasesb 

DM DO Ratio of 
DM:DO  

Refs 
(human) 

Refs  
(mouse)  

Immature DCs +++ Cat S, Cat 
D, Cat E, 
Cat H, 
SPPL2A 
(mu) 
Cat D, Cat 
G, Cat S, 
AEP (hu) 

P P Low 96-101 Immgene; 94,102-

112 

Mature DCs +++++ Cat D, Cat 
H, Cat L, 
AEP (ms), 
Cat S (hu 
and ms), 
Cat B (hu) 

P - High 96 98,101,113 Immgen; 
102,103,109,112,114 

Macrophages ++ Cat B, Cat 
E, Cat F, 
Cat L, Cat 
S, AEP 

P - High 115-119 Immgen; 104,120-

126 

Monocytes + Cat Bc, Cat 
G, Cat Kc, 
Cat Lc, Cat 
Sc (hu) 

P - High 97,127-130 Immgen 

Mature B cells ++ Cat B, Cat 
D, Cat L, 
Cat S, 
SPPL2A 
(ms), Cat E, 
Cat G, AEP 
(hu) 

P P Low 13,131-136 Immgen; 
104,105,137-140 

GC B cells +++ Cat S P - High 131,135,141 Immgen; 137,142 

cTECsa ++ Cat L, 
TSSP (ms) 
 Cat G, Cat 
V (hu) 

P - High 99,143-145 Immgen; 
94,95,146,147 

mTECsa ++ Cat Lc, Cat 
Sc 

P P Low 143,145,148 Immgen; 
146,147,149,150 

Thymic DCsa +++ Cat S (hu 
and ms), 
AEP (ms) 

? ?  ? 151,152 94,124,146 

Endothelium/epitheliumd ++ Cat B, Cat 
D, Cat L 
(hu), Cat S 
(hu and ms) 

P ? ? 153-160 161-163 
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cmRNA expression demonstrated only. 
dHuman endothelium and epithelium basally express MHC-II, while mouse MHC-II has been 
reported both to be expressed basally on epithelium and endothelium as well as only in response to 
inflammation (e.g. exposure to IFN- g). MHC-II levels shown are in the context of inflammation. 
No published data are currently available on DO expression in human or mouse 
endothelium/epithelium in the periphery. 
eImmunological Genome Project (www.immgen.org) 
 
the positively-selecting MHC-II peptidome was demonstrated by rescue of the 

defect in CD4 T cell selection observed in cathepsin L-deficient mice94 via 

reconstitution with MHC-II-deficient bone marrow164. These results suggested that 

in mice deficient in cathepsin L, the efficiency of negative selection of T cells is 

increased due to overlapping immunopeptidomes of MHC-II-expressing 

hematopoietic APCs and cTECs. A substantially reduced MHC-II peptide 

repertoire in H2-M-deficient mice demonstrated a similar effect on the CD4 T cell 

compartment165,166, highlighting the importance of (at least somewhat) distinct 

peptides presented by positively- and negatively-selecting APCs in effective 

thymic selection of CD4 T cells.  

If positive selection is required to ensure that developing CD4 T cells can 

recognize MHC-II-peptides, the process of negative selection is necessary to 

remove CD4 T cells that are overtly reactive with self-ligands167. By deleting T 

cells with exceedingly high affinity for MHC-II bound to peptide autoantigens in 

the thymus, peripheral immune responses to self-antigens can be subverted. MHC-

II presentation by mTECs of peptides derived from self-peptides is mediated by 

promiscuous expression of tissue-restricted antigens by AIRE, which allows for 

deletion of CD4 T cells with high affinity for autoantigens expressed in peripheral 

tissues168. MHC-II processing and presentation of tissue-restricted antigens has 

been shown to involve nonconventional pathways such as macroautophagy and 
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trogocytosis (discussed above). Recent analysis of thymus MHC-II peptidomes has 

confirmed the diverse spectrum of source proteins presented by thymic APCs169,170, 

but whether the thymus-associated MHC-II immunopeptidome is comparatively 

unique relative to other tissues remains a subject for future work. 

Presentation of ligands by MHC-II in the thymic medulla also controls 

development of thymocytes into an alternative CD4 T cell fate. Selection of the 

suppressive Foxp3-expressing T regulatory (Treg) population occurs in the thymic 

medulla through recognition of MHC-II-peptide complexes, at a threshold of 

affinity/avidity thought to lie above the threshold for conventional T cell selection 

but below the threshold for clonal deletion171-174. Examination of T cell activation 

by the Hogquist group using reporter mice expressing Nur77, which is rapidly 

upregulated following TCR signaling, demonstrated the importance of TCR 

specificity in selection of Tregs175. The consequence of Treg selection within a high 

affinity or avidity window is suggested to result in activation of Tregs in the 

periphery at low agonist doses, so that they may outcompete conventional T cells 

for MHC-II ligand binding176,177. Seminal work from the Hsieh group demonstrated 

through TCR retrogenic technology that Treg self-reactivity is observed over a 

broad range of affinity, indicating Tregs are likely to participate in suppression of 

immunity to both self and non-self178. MHC-II peptide ligands responsible for Treg 

selection have not been determined, and identification of these peptides may 

provide greater understanding of the determinants of Treg selection, particularly 

with regard to ligand avidity and affinity. 
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Peripheral tolerance and the MHC-II immunopeptidome 

Following thymic egress, mature CD4 T cells migrate to the periphery and populate 

the secondary lymphoid organs. A portion of clonotypes that exit the thymus are 

reactive to self, owing to the fact that negative selection is an imperfect process179. 

Peripheral tolerance mechanisms serve to dampen or eliminate autoreactive T cells 

by inducing anergy or mediating clonal deletion. T cells that bind their cognate 

ligands in the absence of positive costimulatory molecules become hyporesponsive 

(or anergic), thereby circumventing autoimmune attack of healthy tissue180. Other 

costimulatory molecules such as PD-1 provide negative signals that inhibit T cell 

activation, effectively suppressing self-reactivity181; in mouse models deficient in 

PD-1, autoimmune disease develops with features of lupus, including arthritis and 

glomerulonephritis182. CD4 T cells also require tonic stimulation by MHC-II 

ligands to survive, and the absence of tonic signals results in clonal deletion by 

apoptotic cell death183,184. A third mechanism of peripheral tolerance occurs via 

Treg-mediated suppression of effector T cells. Thymic Tregs enter the periphery 

endowed with suppressive function, and peripheral induction of Tregs, particularly 

in sites such as the gut where naïve CD4 T cells encounter commensal and food-

derived antigens, can help to restrain overactive or self-reactive T cell 

responses185,186. The precise mechanism(s) by which Treg-mediated suppression 

occurs is a matter of some debate187,188, but models of Treg deficiency conclusively 

demonstrate the vital function of these cells in regulating the development of 

autoimmunity and in preventing excessive immunopathology during infection189-

192.   
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Alterations in the MHC-II peptidome that can occur in specific tissues or in 

certain disease states have the potential to compromise the efficacy of peripheral 

tolerance mechanisms. Tissue- or cell-specific differences in antigenic sources, 

processing, or peptide loading may generate distinct peptide repertoires presented 

by particular APCs in particular locations (Table 1.1). Local sources of captured 

exogenous antigen are likely to vary considerably in different organs, and disparate 

metabolic or gene expression profiles of tissue-specific APCs may further diversify 

the immunopeptidome in various locations throughout the body43,193-195. Such 

differences may have implications in maintenance of tolerance based on the weak 

expression of tissue-restricted antigens mediated by AIRE in mTECs196,197, in cases 

where TCR agonist density increases sufficiently enough in the periphery to 

activate a T cell selected in the thymus with only weak affinity for its cognate 

antigen. In addition, post-translational modifications of self-peptides in the 

periphery can lead to generation of novel epitopes capable of binding and activating 

T cells that then initiate an autoimmune response. In such cases, if epitopes fail to 

be generated in the thymus, developing T cells with specificity for these antigens 

may escape negative selection. For example, citrullination of peptides or proteins 

has been observed in rheumatoid arthritis, multiple sclerosis, and type 1 diabetes 

(T1D) and have been implicated in the etiology of disease198,199. Trans-splicing of 

peptides derived from proteins present in the insulin secretory granule has been 

suggested to generate new epitopes that can be loaded onto MHC-II and presented 

by pancreatic beta cells and recognized by diabetogenic CD4 T cells200-202. 

Differential proteolytic activity in different cells or different cellular locations 
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could alter proteolysis of antigens and result in a qualitatively different 

immunopeptidome, as suggested by altered processing of myelin basic protein 

(MBP) and insulin proteins in thymic APCs due to cathepsin S activity152. 

Differential expression of DM, or differential trafficking of antigens through DM-

containing compartments, in the periphery as compared to thymus could further 

influence the content of the MHC-II peptidome and impact autoimmunity203,204. 

Lastly, regulation of the MHC-II peptidome may also be conferred by resistance of 

certain MHC alleles to editing by DM, and this has been suggested to contribute to 

the genetic association of certain HLA-DR and HLA-DQ allotypes with 

autoimmunity in diabetes and celiac disease30,31,205.   

 

MHC-II processing in inflammation 

Professional APCs undergo a maturation process in the context of inflammation 

that results in alterations in MHC-II processing and presentation pathways. 

Changes in multiple components of the MHC-II presentation pathway in addition 

to upregulation of MHC-II expression may serve to focus the peptide repertoire by 

amplifying presentation of stable MHC-II-peptide complexes, which has been 

shown to be a feature of immunodominant epitopes derived from foreign 

antigens206-208. Induction of CIITA by IFN-g in non-professional APCs such as 

endothelial cells – which do not constitutively express MHC-II molecules – results 

in substantial surface expression of MHC-II156,209. Such changes allow for efficient 

and widespread presentation of inflammation-associated epitopes derived from 

invading pathogens or autoantigens. Due to the preponderance of self-ligands in the 
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MHC-II peptidome, however, these changes may also have implications for 

breakdown of tolerance under inflammatory conditions. 

 

Inflammation-associated alterations in antigen acquisition, MHC-II processing 

and presentation 

During an immune response, targeted and precise activation of T cells is necessary 

to eliminate pathogenic insults. Some processes of antigen acquisition are 

downmodulated when APCs are activated, representing a shift in priority from 

antigen sampling to more efficient antigen presentation (Figure 1.1). 

Macropinocytotic activity in activated DCs has been shown to be reduced in some 

contexts and unaffected in others210,211, while activation of macrophages has been 

demonstrated to reprogram antigen uptake to favor macropinocytosis over receptor-

mediated phagocytosis212. In contrast, DC activation appears not to affect the 

efficiency of antigen capture via receptor-mediated phagocytosis213, although 

MHC-II trafficking pathways are altered to prevent MHC-II ubiquitination and 

targeted degradation in lysosomes, preserving captured MHC-II-peptide complexes 

for recycling214. With regard to nonconventional antigen acquisition by autophagy 

in the context of inflammation, presentation of many bacterial and viral antigens 

has been shown to be dependent on macroautophagy215-217, supporting a continued 

role for this process during an immune response.  

Changes in the antigen processing and presentation machinery during 

inflammation serve to poise APCs to most efficiently orchestrate an effective 

immune response (Figure 1.1). Concurrent with alterations in antigen sampling, 
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synthesis of MHC molecules is also regulated in APCs to maximize presentation 

of MHC-II epitopes during inflammation. Surface MHC-II levels are 10-fold higher 

in mature DCs compared to immature DCs, owing to a transient burst in MHC-II 

biosynthesis upon DC activation98,102. IFN-inducible CIITA-mediated upregulation 

of MHC-II and associated processing and loading machinery also confers antigen-

presenting ability to endothelium and epithelium98,218-220. Redistribution of MHC-

II molecules from endosomes and lysosomes to the plasma membrane in DCs and 

macrophages further maximizes antigen-presenting efficiency, as does the 

enhanced stability of surface peptide-MHC complexes upon DC 

maturation98,102,221. In addition to overall enhanced MHC-II presentation and 

upregulation of costimulatory molecules, inflammatory signals result in changes in 

antigen processing and peptide loading machinery that likely affect the spectrum of 

peptides presented on MHC-II (Figure 1.1 and Table 1.1). Cathepsins are 

redistributed to MHC-containing compartments, and antigen processing efficiency 

is enhanced in DC exposed to TLR ligands222,223. Acquisition of cathepsin E activity 

has been shown in primary B cells activated with PMA or Staphylococcus aureus 

in vitro133,224. DO expression is downmodulated following DC maturation and B 

cell entry into germinal centers101,111,112,131,141, effectively increasing DM activity. 

Removing inhibition of DM has the potential to allow for editing of a subset of the 

MHC-II peptidome, although the determinants that dictate sensitivity vs. resistance 

of peptides to DM-mediated editing remains a topic of active investigation4,29,225-

230. These alterations, together with overall reduction in antigen acquisition during 
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inflammation, result in augmentation of antigen-presenting capacity and 

presentation of stable MHC-peptide complexes to T cells.   

 

Potential effects of inflammation on peripheral tolerance 

MHC-II peptide elution studies suggest that epitopes derived from pathogens 

comprise only a small fraction of the overall peptide repertoire. Due to the 

predominance of self-ligands in the MHC-II peptidome, increased surface 

expression of MHC-II on APCs during inflammation will likely result in increased 

peptide density of certain self-peptides. In addition, proteins upregulated by the 

inflammatory process, for example by induction of IFN-stimulated genes, can enter 

the endo/lysosomal pathway and represent an additional source of antigens 

potentially upregulated in inflammatory immunopeptidomes. Thus, during an 

inflammatory response, the increased expression of MHC-II molecules carrying 

particular self-peptides together with increased expression of costimulatory 

molecules, as well as enhanced secretion of cytokines and chemokines, may result 

in unwanted activation of T cells that under homeostatic conditions are only mildly 

reactive to self. Consistent with this idea, the etiology of autoimmune disorders has 

been linked to exposure to pathogens; initial onset of autoimmunity is shown in 

many instances to coincide with recent viral infection231,232. The mechanism 

whereby inappropriate activation of autoreactive T cells occurs in these contexts is 

often attributed to molecular mimicry233,234. Degenerate TCR specificity has indeed 

been shown in studies of MBP-reactive T cell clones, which were found to bind 

pathogen-derived peptides235-237, and TCRs crossreactive for self- and foreign 
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antigens have been observed in other contexts as well238,239. Yet, given the 

considerable levels of self-pMHC on the surface of APCs during inflammation41,43, 

activation of autoreactive T cell clones may also occur in an antigen-specific 

manner, such that increased ligand density in combination with costimulatory 

molecule expression initiates an inappropriate response to self. This idea shares 

features with the concept of bystander activation233 associated with breakdown of 

tolerance, but is distinct in that additional uptake of self-antigen appears not to be 

required, given the predominance of self-pMHC in the immunopeptidome in both 

homeostatic and inflammatory conditions. Moreover, Tregs selected with higher 

affinity or avidity for self-antigen may be similarly activated by upregulated 

presentation of self-peptides, particularly if selection of Tregs is mediated by 

ubiquitous proteins or by antigens commonly overexpressed during inflammation. 

Thus, in addition to suppressing autoreactive T cell proliferation under homeostatic 

conditions, thymically-derived Tregs may in an inflammatory context have an 

important role in suppressing unwanted self-reactivity. Identification of thymic 

Treg peptide ligands could lend support for this proposed function, as well as 

reinforce the basis for selection of Tregs within an avidity/affinity window above 

that of conventional T cells.  

 

Overview of the non-classical MHC-II molecules DO and DM 

The non-classical MHC-II molecules DO and DM are central components of the 

MHC-II processing and antigen presentation pathway. These nonpolymorphic 

MHC-II molecules are homologous to classical MHC-II proteins but are unable to 
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bind peptide. Both DO and DM have been shown to affect selection of the epitopes 

presented on MHC-II in biochemical studies, antigen presentation assays, and 

mouse models. DM is necessary for efficient removal of CLIP from MHC-II 

heterodimers and also serves a peptide-editing function by catalyzing exchange of 

MHC-II peptides, although the determinants of DM action are incompletely 

understood. DO clearly functions as a competitive inhibitor of DM, but because its 

role is implicitly linked to the function of DM, the biological effects of DO 

expression have been difficult to discern.  

 

Discovery of DO and DM 

DO was first discovered over 30 years ago in studies mapping the human MHC 

locus240,241. Using cross-hybridization, a and b chains displaying similarity to 

classical MHC-II molecules were identified and initially called DZA and DOB, 

later DNA and DOB, and finally DOA and DOB240-243. Corresponding mouse genes 

were identified shortly thereafter244,245. In contrast, DM was only identified several 

years later in a comprehensive search for MHC-II genes, perhaps due to its lesser 

identity with classical MHC-II molecules (30%), compared to the homology 

between DO, DP, DQ, and DR (60%)246. While classical MHC-II molecules are 

encoded by the most polymorphic genes in the mammalian genome, DO and DM 

have been shown to display limited polymorphism243,247-249. Recent work has 

demonstrated that the few residues that do vary in different DM haplotypes affect 

presentation of autoimmune epitopes250, and DM polymorphisms have additionally 

been correlated with onset and pathogenesis of rheumatoid arthritis and type 1 



 41 

diabetes251-256. Single-nucleotide polymorphisms in DO have been associated with 

poorer outcome in cancer patients257,258 as well as with altered clearance of hepatitis 

C infection259,260. 

While DM is expressed wherever MHC-II is expressed, DO displays much 

more limited expression and is restricted to immature DCs, mature B cells, and 

mTECs137,149,261,262. DM is coordinately regulated with other MHC-II genes by 

CIITA and is IFN-g-inducible6,7,218, whereas expression of DO appears only partly 

induced by CIITA transcriptional activity and so is subject to as-of-yet unidentified 

additional transcriptional regulation263. Levels of DM are reported to always be in 

excess of DO levels37, and instability of the DO molecule prevents its egress from 

the ER on its own, such that it must first bind DM in order to traffic to 

endosomes264; both of these observations support the idea that DO serves to 

modulate DM activity while preserving DM’s function in removing CLIP from 

MHC-II heterodimers. Further regulation of the DM/DO interaction is 

accomplished by its sensitivity to low pH and by downregulation of both molecules 

during certain cell developmental transitions. As endosomes mature and acidify, 

the net DM activity has been shown to increase265-267, and recent data suggest that 

low pH-induced structural changes in DO are responsible for increased DM activity 

due to release of DM from inhibition by DO267. While both DO and DM are 

downregulated as DCs mature and as B cells enter the germinal center, DO is 

downregulated to a much greater degree, resulting in enhanced DM activity in these 

cells101,111,112,131,141,262. Thus, DM activity is modulated by multiple mechanisms 
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that are posited to alter the content of the MHC-II peptidome in DO-expressing 

cells. 

 

Molecular mechanisms of DO and DM action 

Since the discovery of DO and DM, significant effort has been made to understand 

their function at the molecular level. Recent resolution of crystal structures of DM 

in complex with MHC-II as well as DM in complex with DO lent insight into the 

mechanisms of action of DO and DM in selection of MHC-II peptides. Pos et al. 

demonstrated that when in complex with DM, HLA-DR undergoes a 

 

Figure 1.2. Similar binding modes of DM/DR and DM/DO (reviewed in 
Mellins and Stern5). 
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conformational change in which residues of the a subunit shift, occluding the N-

terminal region of the peptide-binding site20. The Phea51 MHC-II residue was 

shown to occupy the P1 pocket, interfering with hydrogen bonding between the a 

chain and the atoms of the peptide, and providing a mechanism whereby MHC-II-

peptide interactions are destabilized to allow for peptide exchange20. Guce et al. 

demonstrated similar binding of DO to DM as was shown for DR to DM (Figure 

1.2), except that Phea54 in DO was shown to occupy the region that corresponds 

to the MHC-II P1 pocket32. Mutagenesis of residues in DM important for its 

interaction with MHC-II further demonstrated the corresponding binding modes of 

DO/DM and DR/DM, with such mutations affecting both affinity of DM/DO 

binding and catalysis of MHC-II peptide exchange by DM32.  Given these data, and 

based on the substantial homology between DO and MHC-II, it was determined 

that DO acts as a substrate mimic and competitive inhibitor of DM, thus preventing 

its interaction with MHC-II32. 

An additional feature that has long been described for the DM/MHC-II 

interaction is differential sensitivity of MHC-II-peptide complexes to DM action. 

The factors that influence this interaction and thereby potentially govern DM 

sensitivity have been posited in past years to include destabilization of hydrogen 

bonds in the N-terminal region of the bound peptide268, interaction of DM with the 

MHC-II P1 pocket26,226,269, and distortion of the peptide-binding groove270, among 

others. For each of these parameters, the underlying affinity of the MHC-II-peptide 

interaction is predicted to determine the degree of sensitivity to DM action. Indeed, 

stability of the interaction between MHC-II and peptide has been shown to correlate 
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with DM sensitivity, with less stable peptide species displaying greater sensitivity 

to dissociation from the MHC-II peptide-binding groove in the presence of 

DM207,270. Based on resolution of the DM/DR complex, Pos et al. proposed a model 

whereby the strength of interactions between the peptide and the P1 pocket is the 

primary determinant of DM action230. Additional evidence from our group and 

others, however, suggest that the conformation of the MHC-II-peptide complex 

more accurately determines its DM sensitivity4,25,227,271, and this idea is supported 

by analysis of the effect of residues with different binding properties at various 

positions in the MHC-II peptide-binding groove on DM sensitivity. Yin et al., for 

example, demonstrated that P1 pocket occupancy affects peptide kinetic stability, 

binding affinity, and DM sensitivity, but that these effects can be reversed by 

substitution of the P9 pocket residue4. The differential impact of P1 pocket 

occupancy vs. conformational properties of the MHC-II-peptide complex on DM 

sensitivity, particularly for alleles in which DM sensitivity is much less well-

described, require further study to definitively determine their contributions as 

determinants of DM action. 

 

Effects of DO and DM on epitope selection  

DM has been shown to be important both in removal of CLIP from the MHC-II 

binding groove and in editing of antigenic peptides presented at the cell surface, 

with greater DM activity postulated to result in more stringent editing of the peptide 

repertoire. The net DM activity resulting from the ratio of DM to DO protein levels 

(Table 1.1) is therefore posited to influence the content of the immunopeptidome 
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presented on MHC-II-expressing cells, such that presentation of particular epitopes 

is reduced by the presence and/or levels of DM24,207,208,272. In human transfected 

cell systems, reduced expression of DM leads to presentation of a set of peptides 

with lower MHC-II-peptide affinity29,30. Examination of presentation of particular 

epitopes, including those shown to be immunodominant in autoimmune disease, 

has shown that certain peptides are dependent on DM for presentation (i.e. DM-

sensitive), while presentation of other peptides has been shown to be unaffected by 

DM levels (DM-resistant)251,272-275. Similarly, DO expression has been observed to 

exert differential effects, with presentation increased, decreased, or unchanged, 

depending on the epitope(s) studied276-280. These observations have led to 

development of a model of epitope immunodominance governed by overall DM 

activity, whereby epitopes resistant to DM-mediated exchange become more 

prevalent in the MHC-II peptidome as DM activity increases207,281-283. As a 

competitive inhibitor of DM, DO would therefore function to modulate DM activity 

and the MHC-II peptidome, as would regulation of DO expression at certain cell 

developmental transitions. An alternative model for DO action suggests that rather 

than modifying the immunopeptidome through inhibition of DM editing, the 

primary function of DO is to focus antigen presentation on late endosomal 

compartments, based on the fact that the interaction of DM and DO is pH-

sensitive33,36,264,267,279,280. By tightly binding DM until the endosome becomes very 

acidic, DO has been suggested to prevent efficient peptide exchange from occurring 

in early endosomes, resulting in preferential loading of foreign antigens trafficking 

to late endosomes or lysosomes253,267,280,284. A focus on late endo-lysosomes has 
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been postulated to allow B cells to prioritize presentation of antigens internalized 

through the BCR, which presumably would not release bound cargo until relatively 

low pH262,285. These proposed functions of DO are not necessarily mutually 

exclusive, and further experimentation may prove that the mechanism of DO action 

in fact integrates the two models, such that inhibition of epitope selection by DO 

and pH susceptibility of the DM/DO interaction together shape the 

immunopeptidome.  

 

Summary of published studies of DO and DM function in vivo 

Limited work has been performed in the context of DO or DM deficiency in vivo, 

perhaps due to the phenotypes initially described for mouse models targeting DO 

or DM. In mice lacking DM, CLIP removal and peptide exchange are impaired, 

resulting in both a restricted MHC-II peptidome as well as defective negative 

selection of CD4 T cells165,166,286,287. Due to almost complete CLIP occupancy of 

surface MHC-II molecules, the peripheral T cell repertoire is reduced in number by 

50-80%165,286. DO deficiency, by contrast, has been shown to have a significantly 

less dramatic effect on the peptide and T cell repertoires. Early studies of the DO-

knockout mouse demonstrated effects on antigen presentation, depending on the 

epitope studied (276-280 and discussed above). Mass spectrometric analysis of DO-

sufficient and -deficient mouse cells has suggested that DO affects the MHC-II 

peptidome, with a proportion of peptides identified as uniquely presented by both 

DO-knockout and WT cells276,280. DO deficiency has also been reported to result in 

a mild autoimmune phenotype characterized by increased titers of anti-nuclear 
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antibodies288, and ectopic expression of HLA-DO in DCs prevented diabetes onset 

in the NOD mouse model, reportedly due to altered presentation of self-peptides253. 

Early characterization of the DO-/- mouse also reported increased numbers of CD4 

single-positive (SP) thymocytes276. These observations, together with DO 

expression in mTECs145,147-150, suggest a role for DO in regulating selection of T 

cells. Differences in the particular peptides selected for presentation as well as the 

relative amounts of peptides that are selected are expected to be important in APC 

interactions with T cells. In particular, DO may play a role in negative selection in 

the thymus, based on its expression in medullary thymic epithelial cells (mTECs), 

where a diverse set of self-peptides would be most advantageous for efficient clonal 

deletion of autoreactive T cells. DM and DO may also modulate the density of 

particular epitopes, potentially further influencing clonal deletion or affecting 

diversion of CD4 T cells into the T regulatory (Treg) population (Figure 1.3). 

In the context of responses to immunogens or pathogens, few data are 

available as to the effect of DO and DM (when this project was initiated, no studies 

had yet examined responses to infection in a DO-/- mouse model.) The role of DM 

Figure 1.3. Possible effect of DO ablation on T cell 
selection in the thymus. 
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in mediating selection of viral epitopes was shown in biochemical work 

demonstrating a link between MHC-peptide stability and immunogenicity of 

vaccinia virus epitopes207. DM function has also been studied in vivo in Leishmania 

major infection, which demonstrated that DM was required for initiation of the CD4 

T cell response to an immunodominant L. major MHC-II epitope289. Humoral 

immune responses have been shown to be diminished in the absence of DM, both 

in response to immunization with model antigens as well as following infection 

with vesicular stomatitis virus290,291. DO deficiency has been similarly shown to 

exert effects on the antibody-mediated response to immunization or infection. An 

increase in neutralizing antibody titers in DO-/- mice inoculated with retrovirus was 

recently reported259, in line with an earlier study from the same group in which DO-

deficient B cells were shown to gain preferential access to the GC292. Conversely, 

immunization of DO-/- mice with the model antigens KLH and OVA showed a 

reduction in IgG antibody responses compared to WT mice, as well as diminished 

IL-2 and IFN-g production by CD4 T cells in the absence of DO288. Taken together, 

these data indicate a role for DM and DO in the immune response to pathogens, 

likely due to effects on presentation of pathogen-derived epitopes. 

 

Scope of thesis 

In this work, we sought to understand the effects of the nonclassical MHC-II 

molecule DO in antigen presentation at the cellular level, as well as to understand 

the biological consequences of DO in negative selection of T cells and during a 

response to infection. While the biochemical function of DO as a competitive 
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inhibitor of DM is clear32, the biological effects of DO expression have remained 

much less well understood. DO has been shown previously to have different, often 

contradictory effects on antigen presentation, depending on the epitope studied276-

280. To resolve these inconsistencies, we used mass spectrometric (MS) analysis to 

perform global profiling of the MHC-II self-peptidome in both the presence and 

absence of DO. Results of these studies demonstrate that DO serves to broaden the 

MHC-II peptidome, with many more peptides comprising the peptide repertoire. 

We show that when DO is absent, peptides no longer present in the peptidome are 

sensitive to DM editing. Due to the fact that MHC-II expression remains 

unchanged, more abundant peptides are also presented at greater density in the 

absence of DO. These data demonstrate that DO alters the composition of the 

immunopeptidome by both increasing its diversity and modifying the distribution 

of more abundant peptides. 

Given that DO expression has been demonstrated in the thymus, we sought 

to examine its function in selection of the CD4 T cell repertoire. We show via 

sequencing of TCRa chains in a TCRVb transgenic mouse model that the 

predominant effect of DO is on the Treg population, with clonotypic diversity 

substantially diminished when DO is absent due to increased frequencies of highly 

abundant clonotypes. Using a mouse model of DO deficiency, we demonstrate that 

the frequency of Tregs is augmented, and that these Tregs are more activated and 

exhibit greater suppressive capacity compared to Tregs selected in the presence of 

DO. Despite enhanced frequency and function of Tregs, DO-/- mice displayed 

elevated levels of anti-nuclear antibodies, in agreement with an earlier report288. 
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Based on our observation that DO-/- Tregs have a reduced capacity to differentiate 

into GC-resident Tregs, we postulate that an aberrant GC reaction results in 

development of hallmarks of autoimmunity in DO-/- mice. Using a model of 

experimental Sjogren’s syndrome, we show that mice deficient in DO are more 

predisposed to development of autoimmunity, with a similar reduction in GC-

resident Tregs. We thus describe a previously unexplored function for DO in 

selection of the Treg lineage, as well as demonstrate consequences of perturbation 

of DO expression in autoimmunity. 

DO has been shown previously to exert effects in models of immunization 

and infection, primarily with regard to antibody-mediated effects259,288. We 

reasoned that due to the multitude of epitopes presented on MHC-II molecules 

during influenza infection, for which T cell responses have also been reported293, 

influenza would serve as an opportune model antigen to study the effect of DO on 

modulation of epitope hierarchy. We expected in the absence of DO that DM 

activity would be augmented, that immunodominant epitopes would be presented 

to a greater degree, and that such an effect would therefore enhance the immune 

response to influenza A. Instead, we observed a marked delay in recovery from 

influenza A infection in DO-/- mice as well as increased morbidity. We observed 

altered antigen presentation by DO-deficient APCs, reduced CD4 and CD8 epitope-

specific responses, and decreased cytokine responses. Based on our observation 

that Tregs are increased when DO is absent, we hypothesized that the suppressed 

immune response in DO-/- mice was due to overactive Tregs. Treg depletion studies 
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proved difficult to interpret, however, and so the basis for the phenotype we 

observed is currently unclear. 

In summary, we have delineated the effect of the non-classical MHC-II 

molecule DO at the cellular level, as well as identified novel functions of DO in T 

cell selection and influenza A epitope presentation. These data impact the 

understanding of biological processes critical for tolerance and immunity and have 

the potential to aid in development of therapeutics to treat autoimmune disease and 

infectious disease. 
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CHAPTER II 

 
HLA-DO modulates the diversity of the MHC-II self-peptidome 

 

 

This chapter corresponds to a manuscript published in Molecular and Cellular 

Proteomics: 

Nanaware P.P, Jurewicz M.M., Leszyk J.D., Shaffer S.A., and Stern L.J. (2019). 

HLA-DO modulates the diversity of the MHC-II self-peptidome. 
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The work I performed in this chapter included generation and characterization of 

the HLA-DO-deficient B cell lines, RNAseq analysis, isolation of B cells for MS 

experiments, and mouse immunization experiments. 
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Abstract  

Presentation of antigenic peptides on MHC-II molecules is essential for tolerance 

to self and for initiation of immune responses against foreign antigens. DO (HLA-

DO in humans, H2-O in mice) is a non-classical MHC-II protein that has been 

implicated in control of autoimmunity and regulation of neutralizing antibody 

responses to viruses. These effects likely are related to a role of DO in selecting 

MHC-II epitopes, but previous studies examining the effect of DO on presentation 

of selected CD4 T cell epitopes have been contradictory. To understand how DO 

modulates MHC-II antigen presentation, we characterized the full spectrum of 

peptides presented by MHC-II molecules expressed by DO-sufficient and DO-

deficient antigen-presenting cells in vivo and in vitro using quantitative mass 

spectrometry approaches. We found that DO controlled the diversity of the 

presented peptide repertoire, with a subset of peptides presented only when DO was 

expressed. Antigen-presenting cells express another non-classical MHC-II protein, 

DM, which acts as a peptide editor by preferentially catalyzing the exchange of less 

stable MHC-II peptide complexes, and which is inhibited when bound to DO. 

Peptides presented uniquely in the presence of DO were sensitive to DM-mediated 

exchange, suggesting that decreased DM editing was responsible for the increased 

diversity. DO-deficient mice mounted CD4 T cell responses against wild-type 

antigen-presenting cells, but not vice versa, indicating that DO-dependent 

alterations in the MHC-II peptidome could be recognized by circulating T cells. 

These data suggest that cell-specific and regulated expression of HLA-DO serves 

to fine-tune MHC-II peptidomes, to enhance self-tolerance to a wide spectrum of 
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epitopes while allowing focused presentation of immunodominant epitopes during 

an immune response. 
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Introduction 

Antigen presentation by MHC-II molecules is required for development of CD4 T 

cells and regulation of CD4-mediated cellular and humoral immune responses. The 

non-classical MHC-II molecule DO has been implicated in modulating immune 

responses to both self and foreign antigens. Mouse strains with inactive H2-Ob 

genes have increased neutralizing antibody responses to some persistent viruses259, 

possibly related to increased ability of DO-deficient B cells to enter the germinal 

center292, and HLA-DO variants in humans have been associated with resistance to 

HBV and HCV259. DO knockout (DO-KO) mice also exhibit increased titers of 

autoantibodies, together somewhat paradoxically with decreased antibody 

responses to immunized protein antigens288. DO expression is regulated differently 

from the coordinate regulation of other proteins involved in MHC-II antigen 

processing263, with expression restricted to medullary thymic epithelial cells, 

immature dendritic cells (DCs), and mature B cells137,149,261,262. DO expression is 

also downregulated following entry of B cells into the germinal center and 

following maturation of DCs101,111,112,131,141,262, coinciding with the onset of 

inflammation. This pattern of expression suggests a potential role for DO in 

maintenance of T cell tolerance. Ectopic overexpression of DO in dendritic cells 

has been shown to prevent diabetes in NOD mice, consistent with this idea253, and 

CD4 T cells from DO-KO mice show differential TCRBV usage, also indicating a 

potential role for DO in regulating T cell selection in the thymus276,288. 

Presumably, these effects of DO result from modulation of MHC-II antigen 

processing. DO is posited to regulate peptide loading onto classical MHC-II 
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proteins through interaction with the MHC-II peptide-exchange factor DM5, which 

is required for efficient MHC-II peptide exchange20,22 and which has been shown 

to control CD4 epitope selection207,230,272,281. DO has been shown to act as a tight-

binding competitor of DM32,36,37. The inhibition of DM by DO is pH-dependent, 

potentially restricting efficient antigen presentation to low pH late endosomal 

compartments33,267,279,285. Several studies have shown that DO-KO murine and 

human cells have alterations in MHC-II antigen presentation111,262,276-279,294. 

However, in these studies, the effect of DO seems to vary with the epitope studied, 

with presentation of particular peptides increased, decreased, or unchanged by 

expression of DO276-280. This variation is difficult to reconcile with the biochemical 

effect of DO as a competitive inhibitor of DM, and the fundamental question of 

how DO affects the overall spectrum of MHC-II bound peptides has remained 

unanswered.  

To definitively determine the role of DO in modulating the MHC-II 

peptidome, we used CRISPR/Cas9 gene editing to target DO in a human 

lymphoblastoid cell line and characterized MHC-II bound peptides from DO-

deficient and DO–sufficient cells by quantitative mass spectrometry. We found that 

DO regulates the diversity of MHC-II antigen expression, by increasing the number 

of different peptides presented without changing the overall MHC-II expression 

level. Many low abundance peptides were presented only in the presence of DO. 

We confirmed these observations using a mouse model of DO deletion and 

determined through immunization experiments that the immune system is sensitive 

to these DO-dependent alterations in the peptide repertoire. This work defines a 
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role for DO in mediating qualitative and quantitative changes in the MHC-II 

peptidome and provides a mechanistic basis for the biological consequences of DO 

expression. 

 

 

Results 

Generation and validation of DO-KO and WT clones 

In order to study the effect of DO on the self-peptide repertoire, we used 

CRISPR/Cas9 gene editing to delete HLA-DO from the HLA-DR-expressing 

lymphoblastoid cell line LG-2. Following transfection of sgRNAs, cellular clones 

were isolated, expanded, and sequenced to evaluate DNA modifications at target 

sites in HLA-DOb exon 1 (Figure 2.1A). A clone (DO-KO-1) targeted by sgRNA-

1 was shown to harbor 1-nt and 7-nt deletions, while a clone targeted by sgRNA-2 

(DO-KO-2) showed 1-nt and 4-nt deletions. An additional clone (WT) – subjected 

to the identical transfection process with sgRNA-2 but without any modifications 

in the HLA-DOb locus on either chromosome – was selected as a control. Deletion 

of DOb was confirmed by western blot in DO-KO cells (Figure 2.1B). HLA-DM 

and HLA–DR expression was determined by FACS analysis to be consistent among 

all clones (Figure 2.1C-E). To examine presentation of specific epitopes previously 

demonstrated to be DM-sensitive (CLIP) or DM-resistant (A2[104-117]), we used 

antibodies specific for their DR-bound forms (CerCLIP and UL-5A1, respectively). 

Expression of CerCLIP was decreased ~2-fold in DO-KO clones compared to WT, 
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while expression of UL-5A1 was unchanged (Figure 2.1F-G), consistent with the 

expected DO inhibition of DM editing activity.  
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Figure 2.1. Generation of DO-KO and WT clones. (A) sgRNAs and target sequences for HLA-
DO knockout. (B) Western blot for HLA-DOb performed with lysates from indicated cell lines. 
(C,D) Intracellular HLA-DM (C) and surface HLA-DR (D) expression are similar among WT and 
DO-KO clones by FACS analysis. Isotype controls, gray. (E,F,G) Surface expression of peptide-
MHC complexes, using mAbs LB3.1 (total HLA-DR), CerCLIP (DR-CLIP3), and UL5A1 (DR1-
A2104-117). Mean ± SD (n=3) shown. Paired parametric t-test used to calculate p-values. gMFI, 
geometric mean intensity. 
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Reduced HLA-DR immunopeptidome presented by DO-KO compared to WT cells 

To evaluate the influence of HLA-DO on the full spectrum of peptides presented 

by MHC-II, we characterized the immunopeptidomes presented by HLA-DR1 from 

DO-KO and WT cells. We purified HLA-DR1 from DO-KO-1 and WT clones by 

immunoaffinity, released peptides by acid treatment, and characterized the resultant 

peptide pools by HPLC/MS/MS using a high-sensitivity mass spectrometer with 

search parameters set to provide a conservative false discovery rate. Similarly to 

previous comparative immunopeptidome reports43,295,296, we observed ~70% 

overlap between peptides identified in replicate WT or DO-KO samples (Figure 

2.2A-B). Integrated parent ion peak areas were highly reproducible sample-to-

sample (Figure 2.2C-D), while overlap of WT and DO-KO samples was 
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Figure 2.2. Qualitative and quantitative mass spectrometry analysis. (A,B) Data-dependent 
acquisition analysis, comparing peptide sequences identified in fragmentation spectra (MS/MS) of 
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Each sample was analyzed in triplicate with peptide lists combined. (B) Peptide identification 
overlap for all pairwise combinations of 5 WT samples and 5 DO-KO-1 samples. (C,D) Data-
independent acquisition analysis, comparing intensities in parent ion (MS1) spectra of ion 
signatures (frames) identified in both WT and DO-KO-1 samples. (C) Correlation of intensities in 
various samples analyzed in panel B. (D) MS1 intensity correlation for all pairwise combinations 
of 5 WT and 5 DO-KO-1 samples.  
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comparatively lower (Figure 2.2A-D). A total of 6116 distinct peptide sequences 

were identified in 5 samples of WT cells (Figure 2.3A), similar to the numbers of 

peptides identified in recent high-density immunopeptidome studies for other 

human and mouse MHC proteins296. A smaller number of peptides, 5207, was 

identified in samples from DO-KO-1 cells processed in parallel (Figure 2.3A). 
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Figure 2.3. DO expression results in presentation of a greater number of peptides. (A) Similar 
length distribution of eluted peptides. B) Core epitope illustrated for nested set of peptides from 
human transferrin receptor. (C) Similar sequence motifs within aligned core sequences for WT and 
DO-KO-1 cells. (D) Similar trimming of peptides for WT vs. DO-KO-1. (E) Species richness. The 
number of unique peptides eluted from WT was significantly greater than for DO-KO-1 in each of 
5 independent experiments. (F,G,H) Diversity indices. Chao2 index (F), Shannon’s entropy (G) 
and Simpson’s reciprocal diversity index (H) are greater for WT than for DO-KO-1, calculated for 
peptides observed in each of five biological replicates of both WT and DO-KO-1. Paired parametric 
t-test used to calculate p-values. 
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Figure 2.4. Identification and characterization of peptides from DO-KO-2. (A) Peptides were 
eluted from WT and DO-KO Clone 2 (DO-KO-2) independently in 3 different experiments, 
peptides from WT and DO-KO Clone 1 (DO-KO-1) were eluted i in 5 different experiments, and 
peptides were eluted once from the parental LG2 line as a control. The number of peptides eluted 
in each biological sample is represented as the normalized number of peptides/100μg HLA-DR1. 
The number of peptides eluted from all WT replicates is significantly greater than for DO-KO-1 
and DO-KO-2. Mean ± SD for all biological replicates is shown, and an unpaired nonparametric 
Mann-Whitney test was used to calculate p-values. (B,C,D) Chao2 (B), Shannon’s entropy (C) and 
Simpson’s diversity (D) indices indicate the WT peptidome is more diverse than the DO-KO-2 
peptidome. Mean ± SD is shown, and a paired parametric t-test was used to calculate p-values. (E) 
The normalized number of core epitopes/100μg of HLA-DR1 was analyzed as described in the 
main text. The WT peptidome is comprised of a greater number of epitopes as compared to the 
peptidomes of DO-KO-1 and DO-KO-2. Mean ± SD for all biological replicates is shown, and an 
unpaired nonparametric Mann-Whitney test was used to calculate p- values. (F) Greater numbers 
of unique core epitopes are identified in WT as compared to DO-KO-2 samples. Bar shading 
indicates number of replicate samples for which the core epitope was identified. For example, the 
gray bar labeled “3X” indicates epitopes identified in each of 3 WT samples and none of the 3 DO-
KO-2 samples, the light bar labeled “2X” indicates samples identified in 2/3 WT samples and no 
DO-KO-2 samples, etc. (G) Rank abundance plot. Fractional intensity of core epitopes from WT 
(blue) or DO-KO-2 (red) in each biological sample is represented as an individual line. (H) 
Histogram of fractional intensities of core epitopes, overlaid with a kernel density plot. (I,J,K) A 
set of peptides with known DM sensitivity was analyzed as described in the main text. Amounts of 
the DM-sensitive peptides CLIP (I) and DRα (J) were greater in WT cells as compared to DO-KO-
2 cells. Amounts of the DM-resistant A2 peptides (K) were unaffected. Mean ± SD is shown, and 
a paired parametric t-test was used to calculate the p-values.  
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A broad distribution of peptide lengths centered around 15-16 residues was 

observed similarly for both WT and DO-KO-1 (Figure 2.3A). As is typical for 

MHC-II peptidomes, many peptides were present as nested sets surrounding a 

common core epitope. This is illustrated in Figure 2.3B for 11 peptides from the 

human transferrin receptor protein, found in both WT and DO-KO, which share the 

FLYQDSNWA core that binds to HLA-DR1 (Figure 2.3B). We used the MHC-II 

binding prediction resource NetMHCIIpan3.1297 to predict 9-residue HLA-DR1-

binding cores for each of the eluted peptides. Sequence preferences within these 

cores were essentially identical for WT and DO-KO-1 (Figure 2.3C), as was the 

average number of nested peptides per core and their distribution (Figure 2.3D). 

Thus, many features of the HLA-DR1 peptidome were not significantly altered as 

a result of DO. 

The most apparent difference between WT and DO-KO peptidomes was 

that in the absence of DO, fewer different peptide sequences were presented. For 

each of 5 replicate sets of WT and DO-KO-1 cultures processed in parallel, or 3 

replicate sets for WT and DO-KO-2, fewer peptides were isolated from DO-KO 

than from WT (Figure 2.3E, 2.4A). In biodiversity analysis, the number of different 

species (“richness”) is considered to be a primary criterion of diversity, but other 

diversity measures are available that differentially weight the contribution of rare 

versus abundant species298. The Chao2 index provides an extrapolated estimate of 

the total richness including rare species missed by undersampling299. The Shannon 

diversity index considers the relative abundance of different species, with even 

distributions assigned higher diversity values than skewed distributions. Simpson’s 
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entropy also considers relative abundance, preferentially weighting more abundant 

species298. By all of these measures, diversity was significantly larger for the set of 

peptides eluted from WT as compared to DO-KO-1 (Figure 2.3F-H) or DO-KO-2 

(Figure 2.4B-D).  
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Figure 2.5. Whole-cell proteomic analysis of WT and DO-KO clones. (A) Whole proteomes 
from parental, WT, DO-KO-1 and DO-KO-2 were analyzed in 3 independent experiments. Numbers 
of proteins identified were not significantly different between parental, WT and DO-KO clones. (B) 
Rank abundance plot. Average fractional intensity of proteins from parental (green), WT (blue), 
DO-KO-1 (red) and DO-KO-2 (purple) are represented as an individual line. (C) Shannon’s entropy 
did not show any significant differences between different sample types. Mean ± SD is shown, and 
a paired parametric t-test was used to calculate p-values. (D) Protein intensity correlation plot 
between different sample types showed a strong Pearson’s correlation coefficient as indicated. (E) 
Source protein cellular component analysis using GO terms shows similar overall subcellular 
localization distribution of proteins in parental, WT, DO-KO-1 and DO- KO-2 cells. No significant 
differences were observed between WT and DO-KO samples using elution data from 3 independent 
experiments (a multiple t-test correction using the Benjamini, Krieger and Yekutieli method was 
performed to adjust the p-value.)  
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Validation of immunopeptidome differences  

We investigated several potential explanations for the reduced number of peptides 

observed for DO-KO cells. We used whole-cell quantitative proteomics to 

determine whether deletion of DO had any effect on overall protein levels; no 

significant skewing was observed (Figure 2.5). We used RNASeq to evaluate 

potential alterations due to CRISPR/Cas9 off-targeting effects. Both the DO-KO 

clones and the WT clone exhibited some changes in gene expression compared to 
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Figure 2.6. Equal amounts of DR1, eluted amino acids and mass spectrometry controls were 
detected in WT and DO-KO-1 samples. (A) To ensure that equal amounts of DR1- peptide 
complexes were used for peptide elution from WT and DO-KO cells, amounts of DR1 from the 
extracted membrane fraction was determined by ELISA, for all independent experiments. In every 
experiment, equal amounts of DR1 were present in the WT and DO-KO membrane fractions. (B,C) 
Amino acid analysis of peptides from WT and DO-KO was performed to ensure that equal amounts 
of peptides were eluted. Similar amounts of individual amino acids (B) were found in WT (blue) 
and DO-KO (red) in 3 independent experiments. Analysis of the total number of amino acids (C) 
in WT and DO-KO indicates similar total amounts of amino acids were eluted from both sets of 
cells. Mean ± SD is shown, and a paired parametric t-test was used to calculate p-values. (D) Yeast 
alcohol dehydrogenase peptides were spiked into the pools of eluted WT and DO-KO peptides as 
controls and were detected at equal levels in WT and DO-KO. (E) DR1-GAG (3 experimental 
replicates) or DR1-HA (2 experimental replicates) peptide complexes were spiked into the 
membrane fractions of WT and DO-KO clones as controls to ensure equal recovery of total 
peptides in WT and DO-KO. GAG and HA peptides were detected without any significant 
differences between WT and DO-KO.  
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the parental LG-2 line, but there was no correlation of these differences with 

peptides differentially present in WT or DO-KO, and clustering of functional 

annotations for differentially-expressed genes did not indicate any systematic effect 

on antigen presentation pathways. The reduced number of peptides in DO-KO 

potentially could be explained by elution of peptides from fewer MHC molecules, 

but the amounts of HLA-DR1 purified from WT and DO-KO cells were not 

different (Figure 2.6A), consistent with cell surface expression levels (Figure 2.1). 

Peptides from recombinant peptide-MHC complexes spiked into cell lysates before 

immunoaffinity isolation as internal controls were recovered similarly for WT and 

DO-KO samples (Figure 2.6E), indicating that differential purification did not 

contribute significantly to the observed differences. For 3 pairs of samples, we 

removed a fraction of the eluted peptide mixture and measured the total amount of 

peptide by quantitative amino acid analysis. No significant differences in the total 

amount of peptidic material were observed between the samples (Figure 2.6B), 

indicating that the elution efficiency did not differ between WT and DO-KO. In 

addition, no significant differences in the distribution of amino acid residues was 

observed (Figure 2.6C), suggesting that the observed differences between WT and 

DO-KO were not due to factors such as overall hydrophobicity, which can limit the 

ability to volatilize and enter the spectrometer for analysis. Sample-dependent 

factors that could suppress ionization did not contribute to differential detection of 

peptides in WT and DO-KO samples, as control peptides from yeast alcohol 

dehydrogenase spiked into each sample were detected with similar efficiency 

(Figure 2.6D). Thus, the reduced number of peptides identified for DO-KO as 
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compared to WT samples represents an actual difference in the cellular peptide 

abundances and is not a consequence of experimental factors. 

 

Fewer epitopes presented in the absence of DO 

As each peptide in a nested set represents a different version of the same epitope, 

we asked whether DO deletion reduced the number of distinct epitopes presented 
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Figure 2.7. DO expression results in presentation of greater numbers of and a broader 
distribution of core epitopes. (A) The number of unique core epitopes observed in WT was 
significantly greater than for DO-KO-1 cells in each of 5 independent experiments. Mean ± SD 
(n=5) shown. Paired parametric t-test used to calculate p-values. (B) More core epitopes are 
identified uniquely in WT as compared to DO-KO-1 samples. Bar shading indicates number of 
replicate samples for which the core epitope was identified. For example, the black bar labeled 
“5X” indicates epitopes identified in each of 5 WT samples and none of the 5 DO-KO-1 samples, 
the dark gray bar labeled “4X” indicates samples identified in 4/5 WT samples and no DO-KO-1 
samples, etc. (C) Rank abundance plot. Fractional intensity of core epitopes from WT (blue) or 
DO-KO-1 (red) in each biological sample is represented as an individual line. (D) Histogram of 
fractional intensities of core epitopes, overlaid with a kernel density plot.  
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as it did the number of individual peptides. We combined records for each peptide 

sharing the same core epitope, thus counting each set of related epitopes only once. 

DO-KO-1 and DO-KO-2 cells presented fewer core epitopes then did WT cells, 

with each DO-KO replicate having fewer cores than WT samples processed in 

parallel (Figure 2.7A, Figure 2.4E).  

To help understand the greater diversity of epitopes presented by WT as 

compared to DO-KO cells, we looked for core sequences present in both 

peptidomes, or unique to only WT or DO-KO. Of 704 distinct core epitopes 

detected in each of the 5 WT replicates tested, 25 core sequences were not detected 

in any of the DO-KO-1 samples. By contrast, only one core epitope was present in 

each of the DO-KO-1 samples but was not detected in any of WT samples (Figure 

2.7B). This same pattern held if we relaxed the identification criteria and considered 

peptides present in fewer replicates. For example, 37 additional core epitopes were 

present in 4 of the 5 WT replicate samples but were absent from any DO-KO-1 

sample, whereas no additional core epitopes were detected in 4 of 5 DO-KO-1 

samples and were absent from any WT sample. A similar pattern was observed for 

the second DO-deficient clone DO-KO-2, although in this case the test is less 

stringent due to the fact that only three replicates samples were analyzed (Figure 

2.4). Overall, the WT peptidome appears to contain many peptides that are absent 

from or present at much lower frequency in the DO-KO peptidome. 

One method to visualize diversity is by a rank abundance plot, in which the 

relative abundance of each species is plotted on a logarithmic scale against the 

species rank (i.e. 1 for the most abundant species, 2 for the next most abundant, 
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etc.). This analysis shows a steeper profile for DO-KO-1 as compared to WT, with 

the WT curve showing a more even distribution and a long tail, indicating that many 

more low-abundance peptides are present in WT as compared to DO-KO-1 (Figure 

2.7C). Since the total molar amount of MHC (and peptide) present in WT and DO-

KO samples was identical (Figure 2.6A), this would imply that the average 

fractional abundance of peptides in the DO-KO-1 samples was higher than for WT, 

as the same total amount of peptide was represented by fewer different sequences. 

This can be seen in the density plot (histogram) of abundances of identified core 

epitopes, which shows a slight shift to higher abundances for the DO-KO peptides 

(Figure 2.7D). Similar shifts in rank abundance and density plots were observed for 

DO-KO-2 relative to WT samples processed in parallel (Figure 2.4G-H). Thus, one 

component of the increased diversity of WT as compared to DO-KO peptidomes is 

an increased representation of lower-abundance species. 

 

Validation of intensity differences  

Although individual peptides are detected in the mass spectrometer with different 

efficiencies depending on their charge, hydrophobicity and other factors, parent ion 

intensities as used above in diversity and rank abundance analysis provide reliable 

quantitation when averaged over many ions300. To validate the quantitation of 

individual peptides, we used a stable isotope-labeling approach, in which synthetic 

peptides carrying 13C and/or 15N labels were introduced into eluted peptide samples 

before analysis and used as internal standards. Using volcano plot analysis (Figure 

2.9D), we selected 9 peptides: 1 with parent ion intensities greater in WT than in 
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DO-KO samples, 2 with intensities greater in DO-KO than in WT samples, and 6 

with intensities approximately equal between the samples. We used the most 

abundant peptide containing each core epitope for analysis. The peptides sampled 

a range of masses, charges, hydrophobicities, and observed intensities. For most of 

the peptides, both +3 and +4 ions were observed; these were summed for the 

quantitation. A good correlation was observed between the observed intensities and 

the calculated amounts of peptides present (Figure 2.8A), validating the peak 

integration and sample normalization procedures. Three replicates of one peptide 

fell off the line defined by the other peptides, presumably due to sequence-specific 

factors. The calculated amount of each peptide present in the WT and DO-KO 

eluates was used to determine an abundance ratio, which varied 20-fold between 

peptides, and which clearly distinguished peptides in the WT>DO-KO, WT≈DO-

KO, and DO-KO>WT sets (Figure 2.8B).  
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Figure 2.8. Stable isotope-labeled peptide analysis validates MS1 intensity analysis. (A) 
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Figure 2.9. DO expression increases presentation of low affinity and DM-sensitive peptides. (A-
C) Relative abundance levels for peptides with known DM sensitivity were analyzed in 5 WT and 
DO-KO-1 samples: DM-sensitive CLIP peptides 1 with core epitope MRMATPLLM (A), DM-
sensitive DRα peptides 2 with core epitope FASFEAQGA (B), and DM-resistant A2 peptides 4 with 
the core epitope WRFLRGYHQ (C). Mean ± SD (n=5) shown. Paired parametric t-test used to 
calculate p-values. (D) Volcano plot for cores identified in each of all 5 biological samples for WT 
and DO-KO-1 samples. Cores with intensity ratio differences >2-fold and p-values <5.75E-04 
(Benjamini-Hochberg-adjusted) are shown as black dots. Cores showing significant differences and 
selected for binding affinity studies, DM sensitivity studies and absolute quantification studies are 
shown in blue for WT>DO-KO, red for DO-KO>WT, and green for WT≈DO-KO. (E) Binding 
affinity was characterized for sets of peptides observed in DO-KO only (1 peptide), WT only (15 
peptides), or for peptides with intensities of WT>DO-KO (4 peptides), WT<DO-KO (1 peptide), or 
WT=DO-KO (17 peptides). (F) The DM sensitivities for the same sets of peptides were assessed. 
Mean ± SD from 3 independent experiments shown for all peptides in each group; unpaired 
nonparametric Mann-Whitney test used to calculate p-values. 
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Analysis of epitope source protein intracellular localization 

Because DO has been suggested to control the intracellular location of antigen 

loading through its effects on DM34,267,285,301, we evaluated the GO-annotated 

cellular compartments302,303 for source proteins from which the eluted peptides 

were derived. These were not appreciably different between WT and DO-KO, 
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Figure 2.10. Source protein analysis for peptides eluted from WT and DO-KO-1 cells. (A) 
Source protein cellular component analysis using GO terms shows similar overall subcellular 
localization distribution of peptides in WT and DO-KO cells. No significant differences were 
observed between WT and DO-KO samples using elution data from 5 independent experiments (a 
multiple t-test correction using the Benjamini, Krieger and Yekutieli method was performed to 
adjust the p-value.) (B) Source protein cellular component analysis for uniquely detected core 
epitopes in at least 2, 3, 4 or 5 WT or DO-KO samples as defined in Fig 3B. Due to the small 
number of core epitopes detected uniquely in DO-KO samples, no statistical analysis was 
performed. Numbers above bars correspond to numbers of unique core epitopes in each 
compartment.  
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suggesting that the location of antigen loading was not substantially altered by the 

presence of DO (Figure 2.10). We repeated this analysis for core epitopes identified 

uniquely in WT or DO-KO samples (identified as in Figure 2.7B.) For core epitopes 

unique to WT, the distribution of source proteins was similar to that for all peptides 

(Figure 2.10B). Comparison with DO-KO is hampered by the paucity of peptides 

found uniquely in these samples, but an increased representation of peptides 

derived from extracellular sources (secreted proteins and medium components) is 

apparent (Figure 2.10B), providing one possible explanation for some of the 

peptidome differences observed in the presence of DO. DO-KO mice previously 

have been observed to have increased capacity as compared to WT to present 

peptides derived from exogenous soluble protein antigens279. However, 

extracellular proteins comprised only a small part of the overall peptidome, and we 

observed DO-dependent differences in peptide presentation for epitopes derived 

from many intracellular sources, both intracellular and extracellular. Moreover, 

many epitopes were presented preferentially in WT as compared to DO-KO. Thus, 

we sought other explanations for the effect of DO on MHC-II peptidome diversity. 

 

DO expression allows for presentation of a population of DM-sensitive peptide 

antigens 

Given the role of DM in epitope selection207,282,304 and the function of DO as an 

inhibitor of DM32,36,37, we sought to determine whether DO-dependent differences 

in the MHC-II peptidome were related to sensitivity to DM-mediated exchange. 

We first examined the relative abundance of three epitopes for which DM 
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sensitivity has been previously characterized, summing the intensities of individual 

peptides that contain the respective core epitopes. CLIP and DRa peptides were 

observed at lower abundance in the absence of DO (Figure 2.9A-B, Figure 2.4I-J), 

whereas A2 peptides were not significantly different (Figure 2.9C, Figure 2.4K), as 

expected from their known DM sensitivities, and consistent with surface expression 

data by FACS (Figure 2.1F-G). To extend this analysis to additional peptides, we 

characterized the binding affinity and DM sensitivity of 38 additional peptides, 

grouped into sets according to their representation in WT and DO-KO-1 

peptidomes (Figure 2.9D-F). The DO-KO>WT and DO-KO-only peptides fell 

within the range of the WT≈DO-KO peptide set, whereas the WT>DO-KO and 

WT-only peptides included several species with lower binding affinity and higher 

DM sensitivity. These results support the idea that the increased complexity of the 

WT as compared to the DO-KO peptidome is due at least in part to increased 

representation of DM-sensitive epitopes that are lost when DO modulation of DM 

editing activity is absent.  

 

DO control of peptide diversity evaluated in a mouse model 

Given the DO-dependent peptide differences observed in human B cells, we sought 

to evaluate whether such differences would be similarly observed in a mouse model 

of DO deficiency. We made use of H2-O-/- mice, which previously have been 

shown to exhibit autoimmune and immunodeficient phenotypes279,288. As was 

observed for human B cells, H2-O deletion did not affect surface expression of 

MHC-II on mouse B cells (Figure 2.11A), consistent with previous reports279,288.  
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Figure 2.11. DO control of peptide diversity in a mouse model. (A) Equivalent I-Ab expression 
on splenic WT and H2-O-/- B cells. (B) Similar length distribution for peptides eluted from WT and 
H2-O-/- B cells. (C) Species richness. More unique peptides were eluted from WT than H2-O-/- B 
cells in each of 3 independent experiments. Mean ± SD is shown. (D,E,F) Diversity indices. Chao2 
index (D), Shannon’s entropy (E) and Simpson’s reciprocal diversity index (F) are greater for WT 
than for H2-O-/-, calculated for peptides observed in each of 3 biological replicates of both WT and 
H2-O-/-. (G) The number of unique core epitopes observed from WT was significantly greater than 
for H2-O-/- in each of 3 independent experiments. Paired parametric t-test used to calculate p-values. 
(H) Rank abundance plot. Fractional intensity of core epitopes from WT (blue) or H2-O-/- (red) in 
each biological sample is represented as individual lines. (I) Histogram of fractional intensities of 
core epitopes, overlaid with a kernel density plot. (J,K) CD4 T cell activation measured by 
expression of CD25 (J) or CD69 (K) was observed when H2-O-/- mice (host) were immunized with 
WT splenocytes, but not when WT recipients were immunized with H2-O-/- splenocytes, or with 
splenocytes from syngeneic controls. CD25 and CD69 expression was assessed following gating on 
CD4+CD8-Foxp3- cells. Mean ± SD shown (n=8 mice/group, performed in 3 separate experiments 
with 2-3 mice/group). Unpaired nonparametric t-test used to calculate p-values.  
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We immunoaffinity-purified I-Ab from WT and H2-O-/- splenic B cells, eluted 

bound peptides, and characterized peptidomes by mass spectrometry. As was 

observed for human B cells, a broad length distribution was observed for peptides 

eluted from both WT and H2-O-/- mouse B cells (Figure 2.11B). As observed for 

human B cells, DO deletion in mice caused reductions in the number of unique 

peptides and the number of core epitopes presented by MHC-II, with reduced 

peptide diversity as measured by several indices, and skewed rank abundance and 

density plots (Figure 2.11C-I). To test whether the immune system is sensitive to 

DO-dependent peptide differences, we performed a cross-immunization 

experiment. H2-O-deficient and WT mice were immunized with irradiated 

splenocytes from WT and H2-O-deficient mice, with syngeneic splenocyte 

immunizations serving as controls. CD4 T cells of H2-O-/- recipient mice were 

activated when immunized with WT splenocytes, but CD4 T cells of WT recipients 

immunized with H2-O-/- splenocytes were not significantly activated, nor were CD4 

T cells of syngeneic control recipient mice (Figure 2.11J-K). This unidirectional 

pattern, in which T cells were selectively activated only after having developed in 

the H2-O-/- mouse and when presented with WT peptides, suggest that peptides 

displayed on WT antigen-presenting cells (APCs) are recognized by H2-O-/- T cells 

due to the absence of these epitopes in the H2-O-/- mouse.  
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Discussion 

The role of DO in MHC-II antigen presentation has been the subject of numerous 

biochemical and immunological studies, but understanding of the biological 

function of DO has been complicated by conflicting reports, in which differing 

effects have been described depending on the epitope(s) examined36,37,111,131,141,277-

280,294,305,306. In addition, previous mass spectrometric studies of DO function were 

limited by the technology available at the time and only allowed for analysis of 

qualitative differences in eluted peptides36,276,280. We sought to definitively 

determine the overall peptidome-wide effect of DO on MHC-II antigen 

presentation as well as its in vivo effects. We thus performed a comprehensive 

analysis of the effect of DO on the self-peptide repertoire. We generated DO-KO 

and WT control cells using CRISPR/Cas9-mediated targeted gene deletion, and we 

eluted MHC-II-bound peptides from WT and DO-KO cells. We found that while 

many features of the DO-KO and WT peptidomes were similar, a striking 

difference was that fewer different peptide sequences were presented in the absence 

of DO. We ruled out several explanations that could account for these differences 

in peptide numbers, including different antigen source proteins and lower MHC 

input. We analyzed DO-KO versus WT peptidomes using unfragmented MS1 

parent ion intensities, to avoid sampling issues intrinsic to conventional data-

dependent acquisition proteomics, and validated the intensity-based analysis using 

isotope-labeled peptides. We calculated several measures of peptidome diversity 

and found that repertoire diversity was significantly reduced in the absence of DO. 

The picture that emerges from this quantitative analysis is of a steeper abundance 
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profile in the absence of DO, with abundant epitopes presented in even more copies 

and many of the low abundance epitopes lost. Epitopes presented preferentially in 

WT exhibited lower binding affinity and increased DM sensitivity, demonstrating 

that increased DM activity is at least in part responsible for peptide differences in 

WT vs. DO-KO. We analyzed the peptidome presented by a single human MHC-II 

protein HLA-DR1. Other MHC-II proteins with similar DM sensitivities would be 

expected to behave similarly, but some autoimmune-linked MHC-II proteins have 

reduced DM sensitivity30,205,271 and may show different behavior. To extend our 

observations to a mouse model and test their immunological relevance in vivo, we 

performed elutions from I-Ab isolated from mouse B cells and similarly observed 

reduced peptide numbers in the absence of DO. Immunization experiments showed 

that H2-O-/- cells were selectively activated by WT APCs and not vice versa, 

suggesting that epitopes presented on WT cells were not recognized as self-antigens 

by T cells that were selected or developed in the absence of DO. These data indicate 

that expression of DO results in an altered MHC-II B cell peptidome and have broad 

implications with regard to the role of DO in immunological processes including 

thymic selection, peripheral tolerance, and entry and selection of B cells in the 

germinal center. 

 This study considerably extends previously reported analyses of the effect 

of DO on the MHC-II peptidome, in which the authors observed as many peptides 

presented uniquely in the presence of DO as peptides presented uniquely in the 

absence of DO276,280. Another study concluded that DO expression increases the 

stringency of DM editing36, at odds with reports demonstrating that DO is an 
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inhibitor of DM32,33,36,37. These analyses were limited by the available technology 

to comparing qualitative differences in MALDI spectra, with identification of very 

few if any individual peptide sequences. With advances in mass spectrometry 

sensitivity and mass accuracy295,307, we were able to characterize essentially the 

entire peptidomes of intact and of DO-deleted LG-2 cells (we estimate that lowest 

abundance peptides characterized in our study are present at only a few copies per 

cell or less). Using quantitative methods, we were able to obtain reliable peptidome 

comparisons and to characterize the full abundance profile, rather than simply the 

number of different peptides presented. These results suggest an apparent excess of 

peptides over MHC-II in loading compartments, as the restricted number of 

different peptide species in the absence of DO, presumably through increased DM 

editing, did not result in a lower number of peptide-MHC molecules but did result 

in decreased peptide diversity. This indicates substantially different constraints on 

MHC-II as compared to MHC-I processing, where peptide abundance is posited to 

limit presentation308. While DO has been thought to focus antigen presentation by 

way of restricting presentation to very low pH compartments33,267,279,285, we did not 

find evidence of differential sampling of intracellular compartments in the absence 

or presence of DO. Instead, and in contrast to conclusions made in previous MS 

analyses of DO function36,276,280, we find that DO expression broadens antigen 

presentation, by promoting presentation of low affinity and/or DM-sensitive 

antigens. Our results suggest that when DO is downregulated relative to DM, for 

example upon B cell entry into the germinal center131,141 or during DC 

maturation101,112, the diversity of the MHC-II peptidome will be reduced, with 
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increased DM editing leading to presentation of a more focused and limited peptide 

repertoire.  

We attribute much of the effect of DO expression on broadening the MHC-

II peptide repertoire to inhibition of DM, with peptides more susceptible to DM-

mediated peptide exchange preferentially presented when DM activity is reduced 

in the presence of DO. DO inhibition of DM activity has been demonstrated in vitro 

and in vivo32,33,36,37. Two recent studies have reported data on the effect of DM 

modulation/deletion on MHC-II peptidomes. In a study of DR3-expressing T2 cells 

transfected with different levels of DM, Alvaro-Benito et al. found that higher DM 

expression was associated with presentation of MHC-II-bound peptides with lower 

predicted MHC-II binding affinity29. In a study comparing the peptide repertoires 

of 293T cells transfected with HLA-DQ molecules differentially associated with 

type 1 diabetes, Zhou et al. found that in the absence of DM, peptides with lower 

binding affinity and faster dissociation were presented30. These studies are in 

agreement with our data with respect to DM-sensitive epitopes, in which peptides 

eluted only in the presence of DO were determined to be more sensitive to DM-

mediated exchange. 

 At the cellular level, the results of this study indicate that DO exerts a 

selective effect on the MHC-II peptide repertoire, such that certain epitopes are 

presented only when DO is expressed, while other abundant peptide species are 

presented at lower density. While this work has delineated the overall effect of DO 

with respect to the MHC-II peptidome, these data also provide a mechanistic basis 

for epitope studies in which differing effects of DO have been 
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demonstrated36,37,111,131,141,277-280,294,305,306. Results of our analysis suggest that 

depending on the specific features of the epitope examined, including whether it is 

DM-sensitive or –resistant as well as its abundance, DO expression can result in 

greater presentation, little change, or lesser presentation of a particular peptide 

species. In the context of the larger scope of the function of DO in antigen 

presentation, these data may also explain previous observations observed in settings 

in which DO expression has been modulated. Mice lacking DO have been shown 

to bear an autoimmune phenotype288, and ectopic expression of DO in DCs was 

shown to result in prevention of diabetes in NOD mice253. Based on our analysis, 

we posit that DO expression serves to prevent autoimmunity by allowing for 

deletion of autoreactive clonotypes in the thymus as well as by mediating 

presentation of a broad spectrum of self-antigens to promote peripheral tolerance. 

DO expression is downregulated relative to DM following exposure to 

inflammatory stimuli101,112,137,141,262, and the consequent focusing of the MHC-II 

peptidome on immunodominant (i.e. DM-resistant207,272,281) epitopes may allow for 

a more efficient immune response. Such a role for DO regulation has been borne 

out in studies in which lack of DO has been shown to confer resistance to retrovirus 

as a result of neutralizing antibody production259, as well as to enable preferential 

entry into germinal centers292. Cell-specific expression of DO, which is then 

downregulated with the onset of inflammation, could allow for shifts in the MHC 

peptidome that serve the purpose of promoting tolerance (when DO is expressed) 

and generating an efficient immune response (when DO is downregulated). 
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 In summary, this work defines a role for DO in regulating the MHC-II 

peptidome by effectively increasing the breadth of peptides presented to CD4 T 

cells and by modulating epitope density. Restricted and regulated expression of DO 

suggest the immune system has evolved to allow for presentation of an optimal 

MHC-II peptide repertoire to both promote tolerance and initiate an efficient 

immune response. 
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Materials and Methods 

Generation of DO-knockout (DO-KO) and WT clones 

Single-guide RNAs (sgRNAs) designed to target exon 1 of HLA-DOb (sgRNA-1: 

5’ gACTAGCAGAGCCACCACCCA 3’ and sgRNA-2: 5’ 

GCTAGTGAATCTGACCCGAC 3’) using the CRISPR Design Tool 

(http://tools.genome-engineering.org)309 were cloned into the pX330-U6-

Chimeric_BB-CBh-hSpCas9 plasmid, which was a gift from Feng Zhang310 

(Plasmid #42230, Addgene, Cambridge, MA), and which was modified by insertion 

of a GFP sequence. The px330-GFP vector was then transfected into the human 

lymphoblastoid HLA-DR1 homozygous LG-2 cell line311,312 using the Amaxa 

Nucleofector Kit V (Lonza, Walkersville, MD) according to the manufacturer’s 

instructions, with protocol Y-001 and the Nucleofector II system (Lonza). 

Transfected cells were sorted for GFP expression on a FACSAria (Becton 

Dickinson, Franklin Lakes, NJ) and then grown at 37°C, 5% CO2 in RPMI 

supplemented with 10% fetal bovine serum, 100 IU/ml/100 ug/ml 

penicillin/streptomycin (Corning, Corning, NY), and 2 mM Glutamax (Thermo 

Fisher, Waltham, MA) for 1 week, followed by limiting dilution to isolate single-

cell clones. PCR with primers specific for HLA-DOb was performed using DNA 

isolated from expanded clonal populations, and amplicons were then gel-purified 

and cloned into the pCR2.1 vector using the TOPO-TA cloning kit (Thermo Fisher 

Scientific, Waltham, MA). DNA isolated from mini-preps of bacterial clones was 

sequenced to determine whether indels were present in exon 1 of HLA-DOb. 

Clones were cultured in the medium described above. 
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Western blot 

Total protein was isolated from a negative control T cell line (SUP-T1, [ATCC, 

Manassas, VA]), from the parental LG-2 line, and from the WT, DO-KO-1, and 

DO-KO-2 clones by cell lysis in cold RIPA buffer (50 mM Tris-HCl, 150 mM 

NaCl, 1% [v/v] Triton X-100, 1% [w/v] sodium deoxycholate, 0.1% [w/v] SDS, 

pH 7.4) containing protease inhibitor (Roche, Indianapolis, IN). Protein was 

quantified using a bicinchoninic acid protein assay (Thermo Fisher Scientific), and 

40 µg of each lysate was loaded onto a Novex 12% Tris-Glycine gel (Thermo Fisher 

Scientific) and then transferred to a PVDF membrane. Membranes were blocked 

overnight with 10% nonfat dry milk, probed for HLA-DOb (DOB.L1, Santa Cruz 

Biotechnology, Santa Cruz, CA), and then re-probed with anti-GAPDH (Millipore, 

Burlington, MA) to confirm equal protein loading. 

 

Flow cytometric analysis 

DO-KO and WT clones were blocked with 10 µg/ml human IgG (Sigma Aldrich, 

St. Louis, MO), and then stained for surface expression of HLA-DR (Thermo Fisher 

Scientific). Co-staining of viable cells was performed using the Live/Dead Fixable 

Dead Cell Stain Kit (Thermo Fisher Scientific) for all antibodies. For HLA-DM 

staining, cells were permeabilized using the BD Cytofix/Cytoperm kit according to 

the manufacturer’s instructions (BD Biosciences, San Jose, CA) and then similarly 

blocked using human IgG. Permeabilized cells were incubated with PE-conjugated 

MaPDM.1 (Santa Cruz Biotechnology) to evaluate DM expression. Isotype 
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controls were used for all antibodies. To assess presentation of the CLIP and HLA-

A2(104-117) (A2) epitopes, LG-2 clones were incubated with the CerCLIP (FITC-

conjugated, BD Biosciences) or UL-5A14,313 (followed by incubation with FITC-

conjugated anti-mouse IgG F(ab’)2 [Thermo Fisher Scientific]) antibodies together 

with HLA-DR to calculate ratios of expression for mean fluorescence intensity 

(MFI) of epitopes to HLA-DR in order to account for any small differences in DR 

expression. Antibodies used in additional experiments (details below) were anti-

mouse CD4 (RM4-5), CD8α (53-6.7), CD25 (PC61), CD69 (H1.2F3), and I-Ab 

(AF6-120.1) (BD Biosciences), as well as anti-mouse CD11b (M1/70) and CD43 

(S11) (BioLegend, Dedham, MA) and CD45R/B220 (RA3-6B2) (Thermo Fisher 

Scientific). Prior to staining, mouse cells were blocked with 50 µg/ml anti-mouse 

CD16/CD32 (2.4G2, BioXCell, West Lebanon, NH). Cells were acquired on an 

LSR II flow cytometer (Becton Dickinson) and analyzed using FlowJo version 

9.8.5 software (Tree Star, Ashland, OR).  

 

RNAseq 

RNA isolation, library preparation, and sequencing were performed at the Broad 

Institute (Cambridge, MA). Briefly, RNA was isolated using a Trizol-based method 

followed by purification using silica spin columns. Quantification of RNA was then 

performed using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher 

Scientific), and RNA quality was measured as RNA Quality Score via Caliper GX 

(PerkinElmer, Waltham, MA). 200 ng of total RNA was used for library 

preparation, which was performed with an automated variation of the Illumina 
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TruSeq Stranded mRNA Sample Preparation Kit (Illumina, San Diego, CA) 

according to the manufacturer’s instructions, with indexed adapters designed by the 

Broad Institute. Pooled libraries were normalized to 2 nM and then denatured with 

0.1 N NaOH. Flowcell cluster amplification and sequencing were performed 

according to the manufacturer’s instructions (Illumina) using either the HiSeq 2000 

or HiSeq 2500 sequencing platform, with a 101bp paired-end read. The Broad 

Picard Pipeline was used for data de-multiplexing and data aggregation.  

For analysis of sequencing data, filtering of rRNA and low-quality reads was first 

performed. Transcripts were then quantified by RSEM v1.2.7314 with Bowtie 2315 

using the hg19(GRCh37) assembly. RefSeq annotations were downloaded on 

2/5/17 from the UCSC genome browser316,317. Functional annotation clustering was 

performed using DAVID 6.8318,319. A correlation analysis was also performed using 

RNAseq and mass spectrometric data (below) to evaluate whether clonal or 

CRISPR off-target effects could account for presentation of fewer peptides in DO-

KO. The Pearson correlation coefficients, when comparing intensities of peptides 

found with greater intensity in WT or found only in WT vs. the fold-change 

expression of corresponding genes downregulated in DO-KO, were -0.012 and -

0.102 for DO-KO-1 and DO-KO-2 compared to WT, indicating that reduced 

peptide numbers in the absence of DO were not due to changes in gene expression. 

 

Experimental design and statistical rationale  

WT, DO-KO-1 and DO-KO-2 human LG-2 clones were used to determine the 

qualitative and quantitative differences in peptide diversity modulated by HLA-
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DO. LG-2 cells express the MHC-II proteins HLA-DR1 

(DRA1*01:01,DRB1*01:01), HLA-DQ5 (DQA1*01:01,DQB1*05:01), and HLA-

DP4 (DQA1*01:03,DQB1*04:01) at an approximate 100:17:2 ratio312; only HLA-

DR1 was analyzed in the present study. HLA-DR1-bound peptides were isolated 

from ~108 cells using immunoaffinity purification and were further identified using 

LC-MS/MS. For DO-KO-1, five biological replicates from independent cell 

cultures with paired WT replicates were analyzed. For DO-KO-2, three biological 

replicates from independent cell cultures with paired WT replicates were analyzed. 

To evaluate the role of the murine HLA-DO ortholog H2-O, we used splenic B cells 

from littermate H2-O-/- and WT C57BL/6 mice. These mice express I-Ab as their 

only MHC-II protein. Three biological replicates of paired WT and DO-KO 

samples from ~10 mice/replicate were used, totaling 3x108 cells/replicate. For both 

human and mouse samples, pairs of WT and DO-KO samples were processed in 

parallel, with each biological replicate tested in three technical replicates. Only 

peptides identified with 1% FDR were considered. For systematic comparison 

across the peptides between different samples using their MS1 intensities for 

volcano plot analysis, we applied a multiple comparison correction using the 

original Benjamini-Hochberg method to calculate p-values. The Benjamini, 

Krieger and Yekutieli method was used for comparison of differential source 

protein localization analysis in WT and DO-KO samples using GO terms. We used 

a paired parametric t-test to calculate p-values for differences in number of 

peptides, cores and diversity measures between WT and DO-KO. Also, paired 

nonparametric t-tests, unpaired nonparametric Mann-Whitney t-tests, and specific 
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t-tests were used for different analyses, which are indicated in the figure legends of 

each plot. Prism (version 7.03, GraphPad, San Diego, CA) was used for statistical 

analysis and graphing data. R version 3.3.2 was used for histogram and kernel 

density plots. 

 

Isolation of HLA-DR1-bound peptides 

Membrane solubilized fractions isolated from ~108 cells of each WT and DO-KO 

LG-2 clone were used for elution experiments. Five independent samples each for 

WT and DO-KO from separate cell cultures were analyzed, with five sets of WT 

and DO-KO pairs processed in parallel. Cells were suspended in ice-cold hypotonic 

buffer (10 mM Tris-HCl, pH 8.0, containing protease inhibitors). Repeated (4-5) 

freeze-thaw cycles were used for cell disruption. Cellular debris was removed by 

centrifuging the lysate at 4,000 x g for 5 min at 4°C. The supernatant was collected 

and further centrifuged at 100,000 x g for 1 h at 4°C to pellet the membrane fraction. 

The membrane pellet was solubilized in ice-cold 50 mM Tris-HCl, 150 mM NaCl, 

pH 8.0, containing protease inhibitors and 5% β-octylglucoside, and then mixed 

slowly overnight at 4°C. Supernatant containing the solubilized membrane was 

recovered by centrifuging the lysate at 100,000 x g for 1 h at 4°C. 2.5 µg of DR1-

GAG or DR1-HA complex was added to the membrane fraction as controls. An 

immunoaffinity column of protein A agarose-LB3.1 antibody, prepared as 

previously described312, was used for isolation of DR1-bound peptide complexes. 

The column was equilibrated with buffer (50 mM Tris-HCl, 150 mM NaCl, pH 8.0, 

containing protease inhibitors) for 2 h. The membrane fraction was first 
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equilibrated with protein A agarose beads for 1 h at 4°C and then allowed to mix 

slowly to prevent nonspecific binding of proteins to beads. The precleared 

supernatant was incubated with LB3.1 antibody conjugated to the protein A agarose 

affinity column for 1 h at 4°C and allowed to mix slowly. The column was washed 

with several buffers in succession as follows: 1) 50 mM Tris-HCl, 150 mM NaCl, 

pH 8.0, containing protease inhibitors and 5% β-octylglucoside (5 times the bead 

volume); 2) 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing protease inhibitors 

and 1% β-octylglucoside (10 times the bead volume); 3) 50 mM Tris-HCl, 150 mM 

NaCl, pH 8.0, containing protease inhibitors (30 times the bead volume); 4) 50 mM 

Tris-HCl, 300 mM NaCl, pH 8.0, containing protease inhibitors (10 times the bead 

volume); 5) 1X PBS (30 times the bead volume); and 6) HPLC water (100 times 

the bead volume). Bound complexes were acid-eluted, and MHC-peptide 

concentration from the membrane fraction was measured by ELISA. Peptides were 

further separated using a Vydac C4 macrospin column (Hichrom, Berkshire, UK). 

Firstly, the mixture of DR1 and peptides were bound to the column, and after 

subsequent washes with 0.1% TFA, the peptides were eluted using 30% acetonitrile 

in 0.1% TFA. Eluted peptides were lyophilized using a SpeedVac and were 

resuspended in 25 μl of 5% acetonitrile and 0.1% TFA. This fraction was further 

divided into 3 different portions that were considered as technical replicates of the 

same sample. 2 pmols of ADH digest was added, and a total of 3/25 μl was injected, 

so that the amount of ADH per injection was 240 fmols. Each fraction was analyzed 

using a Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo 
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Fisher Scientific). 3 samples from clone DO-KO-2, 3 additional WT clone samples, 

and a single sample of the parental LG-2 line were analyzed similarly.  

 

Liquid chromatography – mass spectrometry (MS) 

For LC/MS/MS analysis, peptide extracts were reconstituted in 25 µL 5% 

acetonitrile containing 0.1% (v/v) trifluoroacetic acid and separated on a 

nanoACQUITY (Waters Corporation, Milford, MA) UPLC with technical triplicate 

injections. In brief, a 3.0 µL injection was loaded in 5% acetonitrile containing 

0.1% formic acid at 4.0 µL/min for 4.0 min onto a 100 µm I.D. fused-silica pre-

column packed with 2 cm of 5 µm (200Å) Magic C18AQ (Bruker-Michrom, 

Auburn, CA) and eluted using a gradient at 300 nL/min onto a 75 µm I.D. analytical 

column packed with 25 cm of 3 µm (100Å) Magic C18AQ particles to a gravity-

pulled tip. The solvents were A) water (0.1% formic acid); and B) acetonitrile 

(0.1% formic acid). A linear gradient was developed from 5% solvent A to 35% 

solvent B in 90 minutes. Ions were introduced by positive electrospray ionization 

via liquid junction into a Q Exactive hybrid mass spectrometer (Thermo Fisher 

Scientific). Mass spectra were acquired over m/z 300-1750 at 70,000 resolution 

(m/z-200), and data-dependent acquisition selected the top 10 most abundant 

precursor ions in each scan for tandem mass spectrometry by HCD fragmentation 

using an isolation width of 1.6 Da, collision energy of 27, and a resolution of 

17,500.  
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Peptide identification  

Raw data files were peak processed with Proteome Discoverer (version 2.1, Thermo 

Fisher Scientific) prior to database searching with Mascot Server (version 2.5, 

Matrix Science, Boston, MA) against the combined database of UniProt_Human, 

UniProt_Bovine and UniProt_EBV databases, with 115,105 entries downloaded on 

8/5/16. (The LG-2 cell line carries the Epstein-Barr virus genome and was cultured 

in medium containing fetal bovine serum.) Search parameters included “no 

enzyme” specificity to detect peptides generated by cleavage after any residue. The 

variable modifications of oxidized methionine and pyroglutamic acid for N-

terminal glutamine were considered. The mass tolerances were 10 ppm for the 

precursor and 0.05Da for the fragments. Search results were then loaded into the 

Scaffold Viewer (Proteome Software, Inc., Portland, OR) for peptide/protein 

validation and label-free quantitation. Scaffold assigns probabilities using 

PeptideProphet or the LDFR algorithm for peptide identification and the 

ProteinProphet algorithm for protein identification, allowing the peptide and 

protein identification to be scored on the level of probability. An FDR of 1% was 

adjusted for reliable identification of peptides. Peptide lists were filtered to remove 

contaminants such as keratins and IgG-derived peptides. Core epitopes were 

identified for the HLA-DRB1*0101 allele using the NetMHCIIpan3.0 server; the 

top scoring 9-residue sequence within each sequenced peptide was used as the core 

epitope320. Peptides with a length of less than 9 amino acids were excluded from 

the core epitope analysis. A similar analysis using a different prediction algorithm, 

P9321, identified essentially the same cores (~92% identical).  
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Label-free quantitation 

Label-free relative quantitation of all peptides eluted from WT and DO-KO LG-2 

cells was performed using precursor intensity analysis in Scaffold, Scaffold 

Q+/Q+S322-324. Scaffold uses the precursor intensity information from the Thermo 

Proteome Discoverer. The software normalizes total precursor intensity values 

across the samples and calculates fold change or log2 normalized intensity across 

the samples while considering different statistical parameters like t-test, ANOVA 

and coefficient of variance. The log2 normalized intensity values were converted 

to intensities for subsequent analyses. Triplicate technical replicates were run for 

each sample. Only peptides that were observed in at least two of three technical 

replicates in a particular sample were used for intensity analysis, with missing 

values imputed as the minimum intensity observed in that sample, and a single 

average value used to represent the three technical replicates. For analysis of core 

epitope intensities, the intensity values for all peptides sharing the same core 

epitope were summed within each technical replicate, using an approach similar to 

PLAtEAU29, except that NetMHCIIpan rather than overlap analysis was used to 

identify core epitopes. Missing values were imputed and technical replicates were 

averaged for core epitopes as described above for peptides. For calculation of 

diversity statistics, rank abundance plots, density histograms, and volcano plots, 

only core epitopes present in all of the biological replicates were considered. To 

determine fractional intensities in the rank abundance plot, the intensity for each 

core was divided by the total intensity for all core epitopes present in that sample. 

To determine average fractional intensities in the density plot, an average of all 

biological replicates was calculated. For correlation analysis, SIEVE software322,325 
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was used, with frame parameters adjusted to m/z range of 300-1700, frame time 

width of 1.5 min, m/z width of 10ppm, and retention time from 10-80 min. The 

intensity analysis shown for pairs of biological replicates in Figure 2.2 included 

10,000 frames. 

 

Diversity calculations 

Shannon’s diversity index (H) and Simpson’s diversity index (D) were calculated 

to analyze the diversity of WT and DO-KO peptidomes. These indices consider not 

only the number of species (peptides) but also how evenly peptide abundances are 

distributed in the entire sample. Diversity calculations were performed only for 

peptides identified in all biological samples as described above. Shannon’s entropy 

(H) was calculated as:  

𝐻 = −$𝑝&	𝑙𝑛(𝑝&)
,

&-.

 

where R is the number of peptides and pi is the proportion of the total ion intensity 

represented by peptide i. The higher the entropy value, the more diverse the sample. 

Simpson’s diversity index was calculated as: 

D =$𝑝&0
,

&-.

 

Simpson’s reciprocal diversity index was calculated as 1/D, with higher values 

representing more diverse samples. Chao2 (for replicated incidence data) for 

peptides was calculated as: 

SChao2 = Sobs+(Q12/2Q2) 
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where Sobs is the number of observed species, Q1 is the number of singletons 

(species occurring once), and Q2 is the number of doubletons (species occurring 

twice).  

 

Absolute quantification using stable isotope-labeled peptides 

Nine peptides were selected for intensity validation by referencing a volcano plot 

analysis of differences in intensities of the WT and DO-KO-1 vs. their significance 

values adjusted using Benjamini-Hochberg’s correction: one peptide that was 

observed with higher core epitope intensity in WT vs. DO-KO-1 samples 

(WT>DO-KO), two peptides that were observed at higher core epitope intensity in 

DO-KO-1 vs. WT samples, (WT<DO-KO), and six peptides that were observed 

with relatively equal core epitope intensities in the two samples (WT≈DO-KO) 

(Figure 2.9D). We selected core epitopes that were observed in each of the five 

biological replicates, and for differentially expressed core epitopes, that showed a 

statistically significant difference of 2-fold or greater after adjustment for multiple 

comparisons. For each core epitope, we selected the most abundant peptide 

containing that epitope for synthesis and absolute quantification studies. Peptides 

with 13C and 15N labels incorporated at specific residues were synthesized by 21st 

Century Biochemicals (Marlborough, MA) and spiked into new samples of WT and 

DO-KO-1 as internal controls to quantify the chemically-identical unlabeled (light) 

peptides present in these samples. The purity and quantification of these peptides 

were confirmed using amino acid analysis. DR1-bound peptides were eluted from 

WT or DO-KO-1 LG-2 cells as described in the previous section, and a mixture of 
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isotope-labeled peptides at 60 fmols/injection was spiked into the sample. The data 

were analyzed as 3 technical replicates. Quantitation of the selected peptides was 

performed using Skyline software (V3.7, University of Washington, Seattle, WA) 

by generating extracted ion chromatograms of the MS1 signals for the M, M+1, and 

M+2 isotopes of each precursor. For most peptides, both +3 and +4 charge state 

ions were observed; intensities of these were summed for each peptide. Summed 

areas were then compared to the corresponding heavy peptide areas to determine 

absolute amount of peptide. 

 

Soluble recombinant HLA-DR1 and HLA-DM  

Soluble extracellular domains of recombinant HLA-DR1 (DR1) 

(DRA*0101/DRB1*010101) and DM (DMA*0101/DMB*0101) for binding 

affinity and DM sensitivity measurements were expressed in Drosophila S2 cells 

and purified by immunoaffinity chromatography followed by Superdex200 (GE 

Healthcare, Chicago, IL) size exclusion chromatography as previously 

described22,326. 

 

Binding affinity and DM sensitivity measurements 

For three abundant self-peptides, DM sensitivity has been previously characterized: 

CLIP, the invariant chain chaperone fragment efficiently removed by DM22,327, 

DRa52-68, the human ortholog of the YAe epitope328 known to be highly sensitive 

to DM exchange2, and the transplantation alloepitope A2104-117313 previously 

demonstrated to be highly resistant to DM-mediated exchange4. For these peptides, 
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we summed the intensities of all peptides sharing the respective core epitopes and 

compared summed intensities between replicate samples of WT and DO-KO-1 

cells. For a broader analysis, we selected 38 peptides comprising the 9 peptides 

used for stable isotope quantitation, 2 additional peptides with greater core epitope 

intensity in WT peptidomes than in DO-KO-1 as indicated by volcano plot analysis 

(WT>DO-KO), 11 with average core epitope intensity similar in WT and DO-KO-

1 samples as indicated by volcano plot analysis (WT≈DO-KO), 15 core epitopes 

identified exclusively in WT, and one core epitope identified exclusively in DO-

KO-1 (Figure 2.9D). For each core epitope, we selected the most abundant peptide 

containing that epitope for synthesis and binding analysis. A fluorescence 

polarization (FP) assay was used to measure the IC50 of each selected peptide, using 

N-terminally-acetylated influenza hemagglutinin HA306–318 (Ac-

PRFVKQNTLRLAT) labeled with Alexa Fluor 488 tetrafluorophenyl ester 

(Invitrogen, Carlsbad, CA) via the primary amine at K5 as probe peptide as 

previously described329. The DR1 concentration used was selected by titrating DR1 

against fixed labeled peptide concentration (25 nM) and choosing the concentration 

of DR1 that showed ~50% maximum binding. For calculating IC50 values, 100 nM 

DR1 was incubated with 25 nM Alexa488-labeled HA306–318 probe peptide, in 

combination with a serial dilution of test peptides, beginning at 10 μM followed by 

2-fold dilutions. The reaction mixture was incubated at 37°C. The capacity of each 

test peptide to compete for binding of probe peptide was measured by FP after 72 

h at 37°C. FP values were converted to fraction bound by calculating [(FP_sample 

− FP_free) / (FP_no_comp − FP_free)], where FP_sample represents the FP value 



 96 

in the presence of test peptide; FP_free represents the value for free Alexa488-

conjugated HA306–318; and FP_no_comp represents values in the absence of 

competitor peptide. We plotted fraction bound versus concentration of test peptide 

and fit the curve to the equation y = 1 / (1 + [pep] / IC50), where [pep] is the 

concentration of test peptide, y is the fraction of probe peptide bound at that 

concentration of test peptide, and IC50 is the 50% inhibitory concentration of the 

test peptide. To measure DM sensitivity, an IC50,DM was obtained by including 500 

nM DM in the binding competition assay, and ΔIC50 was calculated as (IC50,DM − 

IC50) as described1. DM sensitivity was calculated as ΔIC50 / [DM], where [DM] is 

the concentration of DM.  

 

Whole cell proteomics 

For in-gel digestion and LC-MS/MS analysis, total protein was isolated as above 

for western blot. 50 µg of whole cell lysate was run on an SDS-PAGE system to 

separate proteins from lower molecular weight contaminants, and the entire protein 

region of the gel was then excised and subjected to in-gel trypsin digestion after 

reduction with DTT and alkylation with IAA. Peptides eluted from the gel were 

lyophilized and re-suspended in 100 µL of 5% acetonitrile (0.1% [v/v] TFA) with 

1 pmol ADH digest. An injection of 1.5 µL was loaded by a Waters nanoACQUITY 

UPLC in 5% acetonitrile (0.1% formic acid) at 4.0 µL/min for 4.0 min onto a 100 

µm I.D. fused-silica pre-column packed with 2 cm of 5 µm (200Å) Magic C18AQ 

(Bruker-Michrom). Peptides were eluted at 300 nL/min from a 75 µm I.D. gravity-

pulled analytical column packed with 25 cm of 3 µm (100Å) Magic C18AQ 
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particles using a linear gradient from 5-35% of mobile phase B (acetonitrile + 0.1% 

formic acid) in mobile phase A (water + 0.1% formic acid) for 120 minutes. Ions 

were introduced by positive electrospray ionization via liquid junction at 1.5kV into 

a Thermo Scientific Q Exactive hybrid mass spectrometer. Mass spectra were 

acquired over m/z 300-1750 at 70,000 resolution (m/z 200) with an AGC target of 

1e6, and data-dependent acquisition selected the top 10 most abundant precursor 

ions for tandem mass spectrometry by HCD fragmentation using an isolation width 

of 1.6 Da, max fill time of 110ms, and AGC target of 1e5. Peptides were fragmented 

by a normalized collisional energy of 27, and fragment spectra acquired at a 

resolution of 17,500 (m/z 200). Raw data files were peak-processed with Proteome 

Discoverer (version 1.4, Thermo Scientific) followed by identification using 

Mascot Server (version 2.5, Matrix Science) against an Epstein-Barr virus (Swiss-

Prot), Human (Swiss-Prot), Bovine (UniProt) FASTA file (downloaded 8/2016). 

Search parameters included Trypsin/P specificity, up to 2 missed cleavages, a fixed 

modification of carbamidomethyl cysteine, and variable modifications of oxidized 

methionine, pyroglutamic acid for Q, and N-terminal acetylation. Assignments 

were made using a 10 ppm mass tolerance for the precursor and 0.05 Da mass 

tolerance for the fragments. All non-filtered search results were processed by 

Scaffold (version 4.4.4, Proteome Software, Inc.) utilizing the Trans-Proteomic 

Pipeline (Institute for Systems Biology) with a 0.96% false-discovery rate.  
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Mice 

H2-O-deficient mice were provided by Dr. Xinjian Chen at the University of Utah 

School of Medicine, following backcrossing to C57BL/6 mice for 10 generations. 

H2-O-/- mice were bred at the University of Massachusetts Medical School with 

C57BL/6 mice obtained from Jackson Laboratory (Bar Harbor, ME), and mice 

heterozygous for H2-O-/- were bred to obtain H2-O-/- and WT littermate controls 

for B cell isolation and immunization experiments. Mice were cared for and used 

in accordance with institutional guidelines. 

 

Isolation of B cells from H2-O-deficient and WT mice 

Spleens were isolated from H2-O-deficient and WT littermate mice, dissociated 

into single-cell suspensions, and splenic B cells were evaluated for I-Ab expression 

by first gating on the B220+CD43-CD11b- population and performing flow 

cytometric analysis as above. To isolate mature B cells from the splenocyte 

population, CD43- and CD11b-expressing cells were depleted using biotinylated 

anti-mouse CD43 and CD11b (BioLegend) in conjunction with the EasySep Mouse 

Streptavidin RapidSpheres Isolation Kit (Stem Cell Technologies, Cambridge, 

MA) according to the manufacturer’s instructions. Purity post-isolation was 

determined by FACS to be >90% for each sample, with an average purity of 

94±2.6%. 
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Isolation and characterization of I-Ab-bound peptides  

Mouse B cells (~3x108) were solubilized in 50 mM Tris-HCl, 150 mM NaCl, pH 

8.0, containing protease inhibitors and 5% β-octylglucoside and were processed as 

for LG-2 membrane fractions described above, except that whole cell lysates 

instead of solubilized membrane fractions were used, before loading on an affinity 

column of I-Ab-specific mAb M5114 coupled to CNBr-activated Sepharose, with 

elution and analysis as described above for isolation of HLA-DR1-bound peptides. 

Peptide sequences were identified as described above except that the UniProt 

Mouse database which was downloaded on 10/7/16 with 57,984 entries.  

 

Mouse immunization 

6-8-week-old H2-O-deficient and WT littermate mice were immunized i.p. with 

4x107 irradiated (3000 rads) age- and sex-matched splenocytes from WT or H2-O-

deficient mice. Spleens from recipient mice were harvested 15h later, and single-

cell suspensions were prepared. Following red blood cell lysis, splenocytes were 

subjected to flow cytometric analysis as above, using anti-mouse CD4, CD8, CD25, 

and CD69 antibodies, by first gating on the CD4+CD8- population and then 

assessing expression of CD25 and CD69. Similar CD4 T cell activation results were 

observed at 3 days after immunization. 

 

Data availability 

All raw files have been deposited at MassIVE data repository 

(http://massive.ucsd.edu) developed by Center for Computational Mass 
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Spectrometry (University of California, San Diego) with the project accession 

MSV000082570 (PXD010301). 
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CHAPTER III 

 

Expression of the non-classical MHC-II molecule H2-O regulates Treg selection 

and function 

 

 

Author contributions:  

I performed all work presented in this chapter. 
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Abstract 

MHC-II antigen presentation is critical for induction and maintenance of self-

tolerance, and for prevention of autoimmunity. The nonclassical MHC molecule 

DO has been shown to affect presentation of antigens to T cells by modulating the 

spectrum of peptides presented on MHC-II. By competitively inhibiting the peptide 

exchange factor DM and reducing the efficiency of peptide exchange, DO broadens 

and diversifies the MHC-II immunopeptidome. Here, we report a previously 

undescribed role for DO expression in mediating selection and function of the T 

regulatory (Treg) subset. In the absence of DO, the clonotypic diversity of the Treg 

population is decreased, with highly abundant clonotypes selected with greater 

frequency. We show that Tregs are increased in the DO-/- mouse due to lack of 

thymic-specific expression of DO, and that this results in greater activation of the 

Treg population. While DO-/- Tregs display enhanced ability to suppress 

lymphoproliferation, Tfr differentiation is impaired and autoantibody levels 

increased, both in naïve mice and in a model of autoimmune disease. These data 

provide insight into the role of DO in selecting a self-tolerant T cell repertoire as 

well as into the factors that govern T regulatory selection. 
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Introduction 

 

Presentation of antigens on MHC-II is central to induction and maintenance of 

immunological tolerance to self, and therefore critical for prevention of deleterious 

autoimmune responses. Thymic selection of CD4 T cells necessitates interaction of 

thymocytes with self-ligands presented by MHC-II molecules, while tonic 

stimulation by MHC-II-peptide complexes in the periphery is requisite for T cell 

survival. The orthologous nonclassical MHC-II molecules HLA-DO (human) and 

H2-O (mouse) (referred to hereafter as DO) function in selection of epitopes 

presented on MHC-II molecules by competitively inhibiting the peptide exchange 

factor HLA-DM/H2-M (DM), which removes CLIP from the MHC-II peptide-

binding groove to allow for binding of antigenic peptides and edits the spectrum of 

MHC-II-bound peptides to remove weakly-bound species20,32,37. DO expression has 

been demonstrated in many studies to affect presentation of certain 

epitopes111,262,276-279, and we have recently shown that DO serves to increase the 

breadth and diversity of the B cell immunopeptidome330. In addition to its 

expression in B cells261,262, DO has been shown to display distinct patterns of 

expression and regulation compared to other components of the MHC-II pathway. 

Expression of DO is restricted to immature dendritic cells (DCs), mature B cells, 

and medullary thymic epithelial cells (mTECs), and DO is downregulated as DCs 

mature and as B cells enter the germinal center (GC)101,111,112,131,137,141,149,261,262. 

Based on this unique expression pattern and given its role in broadening the MHC-
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II peptidome, DO may serve to fine-tune the peptide repertoire in order to maintain 

central and peripheral tolerance to an array of autoantigens.  

Positive selection of developing thymocytes is necessary to ensure that CD4 

T cells appropriately recognize MHC-II peptide complexes, while negative 

selection in the thymus eliminates T cells overtly reactive to self. The processes 

that govern central tolerance have been shown to be exquisitely specific with 

respect to both allelic and peptide requirements for recognition167,179,331. 

Modulation of the MHC-II peptidome by DO is therefore likely to affect the 

repertoire of the CD4 T cell clonotypes selected, resulting in different antigen 

specificities. Early characterization of the DO-/- mouse reported increased selection 

of CD4 single-positive (SP) thymocytes276, and ectopic expression of DO in DCs 

was shown to prevent diabetes development in the NOD mouse111; both of these 

results support a role for DO in modulating T cell selection. Similarly to the effect 

of DO on B cells330, DO expression in mTECs and other thymic antigen-presenting 

cells (APCs) may qualitatively and quantitatively alter the immunopeptidome 

presented to developing CD4 T cells. Indeed, analysis of peptides eluted from 

MHC-II isolated from mouse thymic cell lysates demonstrated a similar broadening 

effect of DO on the peptide repertoire (unpublished observations) as was observed 

for human and mouse B cells330, such that in the absence of DO, highly abundant 

peptide species are presented at greater density, while many lesser abundant 

peptides are no longer presented. This dual effect observed in peptide elution 

studies can be attributed to lifting inhibition of DM when DO is absent, with highly 

DM-sensitive peptides removed from the presented peptidome330. Conventional 
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CD4 T cells specific for peptide species normally present in the repertoire may 

escape deletion in mice lacking DO, whereas deletion of clonotypes specific for 

more abundant peptides may be more efficient. In addition, selection of CD4 T cells 

into the T regulatory (Treg) lineage is posited to occur at an affinity or avidity 

threshold above that of negative selection171,173,179,332, such that alterations in the 

immunopeptidome due to DO expression in the thymic medulla may exert effects 

on the efficiency of Treg selection. 

Based on the manner in which DO has been shown to modulate the MHC-

II peptidome, in this work we sought to examine the effect of DO on the TCR 

repertoire and on the functional capacity of conventional and regulatory T cell 

subsets. Our results indicate that DO functions in the thymus primarily to allow for 

optimal selection of CD4 T cells into the Treg lineage. While Tregs selected in the 

absence of DO (DO-/- Tregs) exhibit greater suppressive capacity, this effect 

appears to come at the expense of efficient Treg function in the GC, with DO-/- mice 

exhibiting elevated levels of autoantibodies concomitant with reduced GC Tregs. 

When challenged with autoantigens, DO-/- mice similarly display increased 

autoantibody levels with fewer Tregs again observed in the GC. These data identify 

a previously unknown consequence of DO expression and highlight the importance 

of this molecule in restraint of autoimmunity. 
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Results 

 

DO increases Treg diversity and alters CDR3 amino acid usage 

Based on our observation that the diversity and density of self-peptide species 

presented on MHC-II is modulated by DO expression330, we reasoned that DO may 

function in the thymus to efficiently delete T cells reactive to self as well as to 

mediate optimal selection of T cells into the Treg lineage. In order to examine the 

effect of DO on the T cell repertoire at the clonotype level, we crossed DO-/- mice 

with TCRVβ transgenic mice previously used in studies of self-reactivity, 

YAe62β333,334. These mice were further crossed with TCRa+/- Foxp3GFP mice, and 

TCRa sequencing was performed for CD4 naïve T cells, CD8 naïve T cells, and 
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Tregs sorted from DO-/- or wild-type (WT) YAe62β TCRa+/- Foxp3GFP mice. Data 

processing was performed using an established pipeline335,336, which allowed for 

barcoding of RNA transcripts by UMIs and efficient error correction, and therefore 

for systematic quantitation of TCR clonotypes. We observed that when DO was 

absent, clonotype numbers were significantly reduced in the Treg population, 

numbers of CD4 conventional T cell clonotypes were only slightly increased, and 

as expected no effect was observed on CD8 T cells (Figure 3.1A). Analysis of 

diversity indices demonstrated a substantial decrease in clonotype diversity in the 

DO-/- Treg population by several measures, including the Chao1 index330, which 

provides an estimate of species richness and accounts for issues with 

undersampling, and the Simpson index330, which calculates species diversity 

weighted by abundance (Figure 3.1B). These results suggested that differences in 

the diversity of DO-/- Treg clonotypes were largely due to increased frequencies of 

particular clonotypes. When the proportion of the top 100 clonotypes within the 

total Treg population was assessed, the effect of DO on the most abundant 

clonotypes was apparent (Figure 3.1B). Depiction of repertoire clonality using 

Figure 3.1. DO increases Treg clonotypic diversity and modulates CDR3 properties of Treg 
clonotypes. (A) Clonotype numbers of CD4 naïve T cells, Tregs, and CD8 naïve T cells were 
determined following processing of TRAV sequencing data using the 
MIGECàMiXCRàVDJTools pipeline. (B) Diversity of the Treg population is shown, as 
determined by calculation of the Chao1 and Simpson diversity indices, as well as by analysis of the 
proportion of the top 100 clonotypes in the total Treg population. (C) Analysis of Treg clonotypic 
frequency distribution using quantile plots, which depicts the fraction of clonotypes identified once 
(blue), twice (yellow), or three or more (orange) times, with higher-order clonotypes then further 
divided into quantiles (designated “Q”). The CDR3 sequences for the top 5 clonotypes, as well as 
their proportions, are shown for Q1. Representative DO-/- and WT samples are shown. (D) Analysis 
of amino acid strength at the VJ junction (left, weighted and unweighted) and hydropathy of the 
central 5 amino acids of the CDR3 (right, weighted and unweighted) are shown. For each data point 
(n=3), cells were isolated from 3 DO-/- or WT YAe62β TCRa+/- Foxp3GFP mice. Mean ± SD shown. 
Unpaired parametric t-tests were performed to assess significant differences; *p<0.05, **p<0.01. 
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quantile plots similarly demonstrated the effect of DO on highly-abundant Treg 

clonotypes, with clonotypes observed at higher frequencies constituting a much 

greater proportion of the total Treg population (Figure 3.1C). To ascertain the effect 

of DO on self-reactivity of Tregs, we examined the mean amino acid strength at the 

VJ junction and the mean hydropathy of the central 5 amino acids of the CDR3, 

both of which represent the primary region that interacts with the MHC-II peptide 

complex and which may influence the degree of self-reactivity of a given TCR337. 

Analysis of all DO-/- and WT Treg clonotypes showed no significant differences in 

these parameters between DO-/- or WT Treg CDR3 regions, although a slight 

increase in both variables is appreciable for DO-/- Tregs (Figure 3.1D). When 

weighting of these variables was performed to account for the effect of DO on 

highly abundant clonotypes, the amino acid strength of VJ junction residues 

displayed a significant increase in DO-/- Tregs compared to WT (Figure 3.1D). A 

slight shift in CDR3 hydropathy was observed for DO-/- Tregs compared to WT 

upon weighting, which may represent a meaningful increase that alters the self-

reactivity of clonotypes selected in the absence of DO (Figure 3.1D). In sum, we 

show that the predominant effect of DO expression on the T cell repertoire is to 

skew selection of highly abundant Treg clonotypes, and in doing so to affect amino 

acid properties of the overall Treg population that potentially influence self-

reactivity. 
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DO regulates Treg number and phenotype 

Given the effect of DO on Treg clonotypes in the YAe62β mouse, we next 

examined Treg populations in C57BL/6 mice deficient in DO compared to WT. 

Although numbers of total CD4 T cells have been demonstrated previously to be 

unaltered in these mice279,288, the effect of DO on Tregs has not thus far been 

reported. We observed an increase in Tregs in both number and frequency in the 

absence of DO (Figure 3.2A-B). Tregs in the thymus, spleen, peripheral LNs, and 

mesenteric LNs were all shown to be significantly increased in DO-/- mice (Figure 

3.2A-B). DO is expressed not only in mTECs but also in mature B cells and DC 

subsets137,149, and so we examined the possibility that greater differences between 

DO-/- and WT mice in peripheral Tregs compared to thymic Tregs arose from 

peripheral expansion. Examination of Treg frequencies at 2 weeks of age, soon after 

Treg selection begins338,339, demonstrated a similar increase in Tregs early in 

development as was observed in the adult DO-/- mouse (Figure 3.2C), suggesting 

that Treg expansion in the periphery is unlikely to account for the observed increase 

in Tregs. We further examined peripheral expansion of DO-/- Tregs by evaluating 

their proliferative capacity; BrdU was injected for 3 days into DO-/- and WT 

Foxp3GFP mice, and Foxp3GFP+ T cells were stained for anti-BrdU. No apparent 

difference in Treg proliferation was observed between DO-/- and WT (Figure 3.2D). 

To assess the capacity of DO-/- and WT Tregs to undergo homeostatic proliferation 

in response to WT compared to DO-/- APCs, which would present an altered 

repertoire of peptides, we co-transferred congenically-marked DO-/- and WT Tregs 

into DO-/- or WT TCRb-/-TCRd-/- (TCR-deficient) mice together with CD4 T cells 
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and determined the proportion of DO-/- and WT Tregs 9 days after transfer. In each 

experiment, DO-/- and WT Tregs accounted for ~50% of Foxp3+ cells (Figure 3.2E), 
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indicating lack of DO does not affect the proliferative capacity of Tregs. An 

additional mechanism that potentially could account for increased peripheral Treg 

frequencies is peripheral conversion of naïve T cells into Tregs, a phenomenon that 

most often occurs at mucosal sites but has in some cases been reported to occur in 

lymphoid tissues in response to self-antigen stimulation340-343. Congenically-

marked naïve Foxp3-negative DO-/- and WT CD4 T cells were sorted from DO-/- 

and WT Foxp3GFP mice and co-transferred into DO-/- and WT TCR-deficient mice. 

3 weeks later, spleen and LNs were harvested, and Foxp3GFP-expressing cells were 

quantified. No differences were observed between DO-/- and WT CD4 naïve T cells 

in their ability to convert to Tregs in either DO-/- or WT recipients (Figure 3.2F). 

Recent thymic emigrants (Qa-2low-expressing naïve CD4 T cells) have been 

described as preferentially converting to Tregs in the periphery344, but similarly to 

when all CD4 naïve T cells were co-transferred, no differential effects between DO-

/- and WT Qa-2low naïve T cells were observed with regard to their rate of 

Figure 3.2. Thymic expression of DO augments selection of Tregs. (A) Tregs were identified 
by first gating on CD4+CD8- T cells in thymus and peripheral lymphoid organs, followed by 
examination of Treg frequency (CD25+Foxp3+) within the CD4+CD8- gate. (B) Treg frequency 
and number are shown for thymus, spleen, peripheral LNs (inguinal, axillary, and brachial, shown 
as pLNs) and mesenteric LNs (mLNs) in DO-/- and WT mice. (C) Thymic and splenic Treg 
frequency and number in mice aged 14-18 days were examined in DO-/- and WT mice. (D) 
Analysis of Treg proliferation was performed in DO-/- and WT mice by injection of 1 mg/day of 
BrdU for 3 consecutive days. (E) Following co-transfer of equal numbers of congenically-marked 
DO-/- and WT Tregs (identified as TCRb+CD4+CD8-Foxp3GFP+) into DO-/- or WT (recipient) TCR-
deficient mice, together with DO-/- or WT CD45.1/CD45.2 CD4 T cells, homeostatic proliferation 
was evaluated 9 days later. (F) Equal numbers of congenically-marked sorted naïve DO-/- and WT 
Foxp3-negative CD4 T cells to DO-/- or WT TCR-deficient mice (top panel) were transferred to 
assess the capacity of DO-/- or WT T cells to convert to Tregs (identified as TCRb+CD4+CD8-

Foxp3GFP+) in lymphoid tissue. The Qa-2low fraction of naïve CD4 T cells was similarly transferred 
(bottom panel). (G) Bone marrow chimeric mice were generated, in which DO-/- or WT mice were 
lethally irradiated and reconstituted with DO-/- or WT bone marrow, to determine the sufficiency 
of thymic DO expression in selecting altered frequencies of Tregs (Ly5.2+TCRb+CD4+CD8-

CD25+Foxp3GFP+). Mean ± SD shown, with results from 3-4 independent experiments and 2-4 
mice/experiment. Unpaired parametric t-tests were performed to determine significant differences; 
*p<0.05, **p<0.01, ***p<0.001.  
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conversion to Tregs (Figure 3.2F). Lastly, to determine whether expression of DO 

in the hematopoietic compartment or in radioresistant thymic epithelial cells is 

sufficient to select greater numbers of Tregs, we generated bone marrow chimeras, 

in which DO-/- and WT mice were lethally irradiated and reconstituted with either 

DO-/- or WT bone marrow. 8 weeks later, DO-/- mice were shown to have increased 

frequencies and numbers of Tregs relative to WT mice, irrespective of whether they 

were reconstituted with DO-/- or WT bone marrow (Figure 3.2G), suggesting that 

thymic-specific expression of DO mediates the observed alterations in Treg 

selection. We next examined phenotypic changes in DO-/- Tregs compared to WT 

in the thymus and periphery. Similar to previous reports that describe activated or 

effector Tregs339,345,346, we observed increased PD-1 and ICOS expression in DO-/- 
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Tregs in the thymus (Figure 3.3A), while in splenic DO-/- Tregs, expression of PD-

1, ICOS, CD44, CD25, and EBI3 were increased, and CD62L was decreased 

(Figure 3.3B). The effect of lack of thymic expression of DO thus increases 

selection of Tregs and results in enhanced activation of the Tregs selected.  

 

DO alters Treg suppressive function 

Due to the fact that activated Tregs have been shown to exert greater suppressive 

function compared to their more naïve counterparts346,347, we next assessed whether  

Figure 3.3. DO modulates Treg phenotype in the thymus and periphery. (A) Thymic DO-/- and 
WT Tregs (gated on CD4+CD8-CD25+Foxp3+) were evaluated for expression of PD-1 and ICOS. 
(B) Splenic DO-/- and WT Tregs were evaluated for levels of PD-1, ICOS, CD25, CD44, CD62L, 
and EBI3 (gating was performed as in A). Mean ± SD shown, with results from 3-4 independent 
experiments and 2-4 mice/experiment. Unpaired parametric t-tests were performed to determine 
significant differences; *p<0.05, **p<0.01, ***p<0.001. 
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DO impacts the capacity of Tregs to suppress autoreactive T cell effector function. 

Using the Foxp3sf (scurfy) mouse model, which due to a frameshift mutation in the 

Foxp3 gene is Treg-deficient and therefore succumbs to lymphoproliferative 

disease at 3-4 weeks of age348, we demonstrated that transfer of DO-/- Tregs more 

efficiently reverts autoimmunity in the scurfy mouse, with fewer numbers of DO-/- 

Tregs exerting greater suppression compared to WT Tregs (Figure 3.4A-B). 

Numbers and frequencies of CD4 effectors in both spleen and LN were shown to 

be reduced when 2x105 DO-/- Tregs were transferred compared to WT Tregs (Figure 

3.3B). Histological analysis of skin, lung, and liver further demonstrated the greater 

suppressive effect of 2x105 DO-/- Tregs, with greater preservation of tissue integrity 

and less lymphocyte infiltration (Figure 3.4C-D). To exclude the possibility that 

antigen presentation to DO-/- Tregs by WT APCs in the scurfy mouse model 

resulted in greater activation and therefore enhanced suppression by DO-/- Tregs, 

we performed an in vivo Treg suppression assay in DO-/- and WT TCR-deficient 

Figure 3.4. DO regulates Treg suppressive capacity. (A) Transfer of DO-/- or WT Tregs was 
performed in the Foxp3-deficient scurfy mouse model. Following transfer of Tregs at day 1 or 2 of 
life, CD4 T cell activation (shown as frequency of CD44hiCD62Llo cells, gated on CD4+CD8-) was 
assessed at 21 days of age. Result from a WT littermate mouse is shown for reference. (B) 
Quantification of T cell activation (CD44hiCD62Llo within the CD4+CD8- population) by frequency 
(top panel) and number (bottom panel) at day 21 was performed in Foxp3sf mice, in which transfer 
of DO-/- or WT Tregs was performed at day 1 to 2 of life. (C) H&E staining of skin, liver, and lung 
samples isolated at day 21 from Foxp3sf, WT, Foxp3sf treated with 2x105 WT Tregs, and Foxp3sf 
treated with 2x105 DO-/- Tregs are shown, using 10x magnification. (D) Histological evaluation of 
H&E staining of skin, liver, and lung samples shown in (C) by scoring of infiltration and tissue 
morphology. (E) The effect of differential antigen presentation by DO-/- or WT APCs on DO-/- or 
WT Treg suppressive capacity was assessed, as measured by suppression of proliferation of 
congenically-marked DO-/- or WT CD4 Foxp3-negative naïve T cells in TCR-deficient mice by DO-

/- or WT Tregs. Quantification of proliferation was performed by enumerating CD4 conventional T 
cells (TCRb+CD4+CD8-) based on congenic marker expression. (F) Examination of Treg phenotype 
during acute inflammation was performed, in which congenically-marked DO-/- and WT Tregs 
(identified as TCRb+CD4+CD8-Foxp3GFP+) were co-transferred to DO-/- or WT TCR-deficient mice 
5 days after transfer of scurfy T cells. Mean ± SD shown, with results from 3-4 independent 
experiments and 2-4 mice/experiment, except for scurfy experiments, which are dependent on 
number of scurfy mice/litter and for which 1-3 mice/experiment were used. Unpaired parametric t-
tests were performed to determine significant differences; *p<0.05, **p<0.01, ***p<0.001. 
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mice, in which sorted naïve Foxp3-negative CD4 T cells were transferred alone or 

together with DO-/- or WT Tregs. Suppression of proliferation was not affected by 

the presence or absence of DO in APC populations (Figure 3.4E), suggesting 

increased suppression was an intrinsic property of Tregs selected in the absence of 

DO. We next co-transferred congenically-marked DO-/- and WT Tregs 5 days after 

scurfy T cell transfer into DO-/- or WT TCR-deficient mice, in order to discern the 

effect of differential peripheral antigen presentation by DO-/- or WT APCs on Treg 

activation as well as to examine any phenotypic changes in Tregs during 

inflammation that may account for the greater suppressive capacity of DO-/- Tregs. 

Expression of ICOS remained increased in DO-/- Tregs compared to WT, 

irrespective of transfer to DO-/- or WT TCR-deficient mice (Figure 3.4F), indicating 

differential antigen presentation does not impact its expression on DO-/- Tregs. PD-

1 expression appeared to be affected by both the inflammatory setting and antigen 

presentation; relative to PD-1 expression by WT Tregs transferred to WT 

recipients, lesser PD-1 expression was observed in all other contexts (Figure 3.4F), 

suggesting PD-1 is regulated both in response to presentation of a greater density 

of self-antigens on MHC-II molecules (in WT Tregs when transferred to DO-/- 

TCR-deficient mice) as well as downregulated in DO-/- Tregs during acute 

inflammation when antigen density is likely augmented. We also observed greater 

expression of GITR and TNFRII in DO-/- Tregs compared to WT, independent of 

differential antigen presentation by DO-/- or WT APCs (Figure 3.4F); Treg 

suppressive function has been reported to be maximally effective when these 

molecules are expressed345,349,350. Taken together, these data suggest that the DO-/- 
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Treg phenotype is predominantly cell-intrinsic, and that during inflammation DO-/- 

Tregs upregulate molecules that augment Treg suppressive capacity to a greater 

degree than their WT counterparts.  

 

DO impacts Tfr differentiation and autoimmunity 

Previous examination of immunological alterations in the DO-/- mouse model 

demonstrated a mild autoimmune phenotype in these mice, characterized by 

elevated titers of anti-nuclear antibodies (ANAs) beginning at 5 months of age288, 

although in another study this effect was not observed259. We assessed ANAs in 

serum isolated from 6-month-old DO-/- and WT littermate mate, and similarly to 

Gu et al.288, DO-/- mice were shown to display higher levels of antibodies specific 

for dsDNA (Figure 3.5A). Elevated Treg numbers intuitively would seem to 

counter development of autoimmune disease; however, the recently described 

germinal center (GC)-resident T follicular regulatory (Tfr) cell subset, which 

differentiates from Tregs, has been implicated in mediating the humoral response 

in several contexts of autoimmunity351-353. Recent work delineating the effect of 

Treg-specific deletion of Helios on Treg function reported increased autoantibody 

levels based on the reduced ability of Helios-deficient Tregs (generated by Cre-

mediated deletion of floxed Helios in Foxp3-expressing cells) to differentiate into 

Tfr354. In another study, PD-1 expression by Tregs was shown to negatively 

regulate differentiation of Tregs into Tfr and to reduce Tfr suppressive capacity355. 

Based on the similar autoimmune phenotype of the DO-/- mouse to the Heliosfl/fl x 

Foxp3Cre mouse as well as the augmented expression of PD-1 on DO-/- Tregs, we 
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evaluated GC cell subsets in 12-week-old DO-/- and WT mice to determine whether 

an aberrant GC reaction could account for the elevated ANAs observed in the DO-

/- mouse. GC B cells and T follicular helper (Tfh) cells were found to be increased 

in DO-/- mice, while the frequency of Tfr cells was decreased (Figure 3.5B), 

suggesting insufficient regulation of interactions between autoreactive B cells and 

T cells in the GC and therefore lack of restraint of autoantibody production in the 

DO-/- mouse. Using the Treg co-transfer model employed above, in which scurfy T 

cells were transferred followed by transfer of congenically-marked DO-/- and WT 
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Tregs 5 days later, we examined whether Treg differentiation to Tfr is affected by 

differential antigen presentation by DO-/- or WT APCs. Fewer Tfr were observed  

in the DO-/- Treg population when transferred to either DO-/- or WT TCR-deficient 

mice, indicating Tfr differentiation is unaffected by antigen presentation by DO-/- 

vs. WT APCs (Figure 3.5C). To further probe the role of Tfr in the development of 

autoimmunity in the DO-/- mouse, we immunized female DO-/- and WT littermate 

mice with salivary gland-derived autoantigens to induce experimental Sjogren’s  

syndrome (ESS), a chronic disease model that in humans is characterized by 

autoimmune attack of moisture-producing glands and can coincide with systemic 

organ dysfunction including pneumonitis and nephritis356,357. Ablation of Tfr in 

mice via Treg-specific targeting of Bcl6 has also recently been demonstrated to 

exacerbate disease in the ESS model, as evidenced by elevated levels of anti-

dsDNA antibodies, reduced saliva secretion, and lymphocytic infiltration of the 

salivary glands in the absence of Tfr353. Upon induction of ESS in DO-/- and WT 

littermate mice, anti-dsDNA antibody levels were significantly increased in DO-/- 

Figure 3.5. DO impacts differentiation of Tfr and development of autoimmunity. (A) Anti-
dsDNA antibodies were measured in sera (diluted 1:50) isolated from 6-month-old DO-/- and WT 
mice. (B) Cell subsets important in the GC reaction were assessed in 12-week-old DO-/- and WT 
mice. GC B cells (Fas+GL-7+, gated on B220+IgD-), Tfh cells (CXCR5+PD-1+, gated on CD4+CD8-

B220-Foxp3-), and Tfr (CXCR5+PD-1+, gated on CD4+CD8- B220-CD25+Foxp3+) were quantified 
in spleens. (C) The capacity of DO-/- and WT Tregs to differentiate into Tfr was examined; 5 days 
following transfer of scurfy T cells, congenically-marked DO-/- and WT Tregs were transferred, 
and Tfr (identified as TCRb+CD4+CD8-B220-Foxp3GFP+CXCR5+PD-1+) differentiation was 
assessed 7 days later. (D) Anti-dsDNA antibody levels were assessed by serial dilution in an 
induced model of experimental Sjogren’s syndrome (ESS) for DO-/- and WT mice. Control mice 
were immunized with adjuvant alone, and sera were collected at 5 weeks post-immunization and 
diluted twofold. (E) Cervical LNs were isolated at 5 weeks post-immunization in the ESS model 
and examined for GC cell subsets, identified as in (B), as well as for IFN-g expression by CD4 T 
cells. Mean ± SD shown, with results from 3-4 independent experiments and 2-4 mice/experiment. 
Unpaired parametric t-tests were performed to assess significant differences, and multiple t-tests 
were used to determine statistical differences in (D); *p<0.05, **p<0.01, ***p<0.001. 
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mice at 5 weeks post-immunization compared to WT mice (Figure 3.5D). 

Examination of cell subsets within the cervical LNs isolated at this time point 

demonstrated increased frequencies of GC B cells and decreased frequencies and 

numbers of Tfr (Figure 3.5E), again implicating lack of regulation of the GC 

response in the increase in anti-dsDNA antibodies observed in DO-/- mice. These 

data indicate that DO-/- Tregs, while increased in number and endowed with greater 

suppressive capacity, are functionally deficient in their ability to suppress the 

autoimmune GC reaction, resulting in aberrant autoantibody production and 

increased susceptibility to autoimmunity.  

 

 

Discussion 

 
The results reported in this work provide insight into a previously undescribed role 

for thymic expression of the nonclassical MHC-II molecule DO in mediating 

selection of T cells into the T regulatory lineage. DO has been shown to alter the 

global MHC-II self-peptidome by increasing the breadth of peptides presented, 

such that when DO is absent, abundant self-peptides are presented at greater 

density, while many low abundance peptides are no longer presented330. Given that 

Tregs are positively selected on self-peptide ligands during the process of negative 

selection, DO-dependent differences in Treg selection are likely due to increased 

presentation of abundant peptides, rather than to lack of presentation of low 

abundance peptides, consistent with the avidity model of Treg selection171,332. We 

further show that when DO is absent, altered selection of Tregs results in greater 
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Treg activation and suppressive capacity. Despite the enhanced effector phenotype 

and function of DO-/- Tregs, these cells appear to be deficient in their ability to 

differentiate into Tfr, resulting in increased levels of autoantibodies at 6 months of 

age as well as in the induced experimental model of Sjogren’s syndrome. These 

data indicate that DO is required to select Tregs at the appropriate frequency and 

with the appropriate phenotypic and functional properties, and that perturbation of 

DO expression predisposes mice to autoimmunity due to Treg dysfunction. 

The phenotype observed for DO-/- Tregs shares features with several 

recently described Treg subsets and suggests DO plays a role in selection of Tregs 

with distinct properties. Similar to DO-/- Tregs, Tregs that express high levels of 

PD-1, GITR, and CD25 have been demonstrated to be highly self-reactive, to 

exhibit lesser diversity, and to more efficiently suppress lymphoproliferation 

compared to Tregs expressing lower levels of these molecules345. Aire-dependent 

selection of Tregs early in life has been shown to generate a Treg compartment 

uniquely capable of reversing autoimmune pathology associated with Aire 

deficiency, compared to Tregs generated in the adult mouse339. Tregs selected 

during this perinatal window of development expressed higher levels of PD-1, 

EBI3, and ICOS, similar to the phenotype displayed by DO-/- Tregs339. Analysis of 

perinatal mTECs also identified a previously undescribed aspect of regulation of 

DO expression; compared to mTECs in the adult mouse, perinatal mTECs were 

shown to exhibit lower expression of DO and higher DM expression, indicative of 

presentation of a different peptide repertoire early in life339. Yang et al. conclude 

that a distinct repertoire of Tregs, selected on an altered MHC-II 
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immunopeptidome, are required early in life to guard against autoimmune attack of 

particular tissues339. In the case where DO expression is lacking throughout life, as 

we have examined here, the effect on T cell selection may be to generate a Treg 

repertoire that fails to protect against development of autoimmunity in adult 

organisms due to inappropriate specificity of the Treg population for the self-

antigens that predominate during adulthood. 

Based on results of peptide elution studies330, we posit that peptides 

presented at greater abundance due to lack of DO are responsible for the observed 

Treg alterations in frequency, phenotype and function described here. Identification 

of the peptide ligands that bind these differentially selected Tregs would not only 

lend support to this hypothesis but could also provide greater understanding of the 

mechanism whereby Tregs are selected with regard to peptide affinity and/or 

avidity. Our data also do not necessarily rule out that selection of CD4 conventional 

T cells is unaffected by DO expression, as the number of CD4 naïve T cell 

clonotypes appeared to be increased to a minor degree in TCR sequencing 

experiments. This result would seem to be consistent with less efficient deletion of 

CD4 T cell clonotypes specific for peptides no longer present in the DO-/- 

immunopeptidome, but effects on CD4 conventional T cell number and phenotype 

were not apparent in our studies. We therefore postulate that the predominant 

function of DO in the thymus is to regulate Treg selection. This idea is supported 

by the fact that DO is expressed both in the thymic medulla and in the 

periphery137,149; while the thymic vs. peripheral MHC-II immunopeptidome may 

differ to some degree, it has nevertheless been difficult to reconcile the idea that 
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DO expression is necessary for clonal deletion given that its expression persists in 

peripheral APCs, where presentation of DO-dependent peptides would appear to 

serve little function in maintaining peripheral tolerance. If DO is expressed 

primarily to mediate Treg selection, however, it would seem more likely that the 

immune system has evolved to express DO so that Treg clonotypes are both 

positively selected and provided with appropriate tonic stimulation in the periphery. 

In addition to the effects of DO on Treg selection, we show that DO-/- mice are 

predisposed to displaying hallmarks of autoimmunity, in agreement with an earlier 

report288. We attribute increased autoantibody levels to a deficiency in the 

differentiation of DO-/- Tregs to Tfr, a GC-resident subset which has been shown to 

functionally suppress the GC reaction in models of autoimmunity and infection351-

353,355,358. It should be noted that significant increases in GC B cells were also 

observed in DO-/- mice compared to WT, in both unchallenged and autoantigen-

challenged mice. Whether this GC B cell increase is due to defective Tfr function 

or arises de novo in DO-/- mice is unclear. DO-deficient B cells have been shown 

previously to gain preferential entry to the GC292, suggesting a mechanism whereby 

DO-/- B cells receive more help from Tfh cells and thus populate the GC to a greater 

degree. Moreover, previous examination of the cellular source responsible for ANA 

production in DO-/- mice indicated that lack of DO in the hematopoietic 

compartment was sufficient to induce autoimmunity288. It is therefore possible that 

several GC subsets (B cells, Tfh, Tfr) contribute to the observed autoimmune 

phenotype and that the sum of the aberrant interactions of these cells results in 

greater autoimmunity in DO-/- mice. 
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In summary, we have demonstrated that DO functions in optimal selection 

of the Treg compartment, and that ablation of DO expression results in greater 

autoimmune phenotypes, which appears linked to to Treg dysfunction. These data 

not only define a novel function of thymic DO expression but may lead to greater 

understanding of the mechanism of Treg selection. 
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Table 3.1. Primer sequences and amplification parameters used for TCR 
sequencing 

Step Forward primer sequence 
5’-3’ 

Reverse primer sequence(s) 5’-3’ Reaction conditions 

cDNA 
synthesis 

CTACACGACGCTCTTC
CGATCTNNNNUNNNN
UNNNNUCTTrGrGrGrGr
G 

1)  CTCAGCGTCATGAGCAGGTTAAAT 
2)  CAGGAGGATTCGGAGTCCCATAA 
3)  TTTTACAACATTCTCCAAGA 
4)  TTCTGAATCACCTTTAATGA 
5)  ATGAGATAATTTCTACACCT 
6)  TTTGGCTTGAAGAAGGAGCG 
7) TTCAAAGCTTTTCTCAGTCA 
8)  TGGTCTCTTTGAAGATATCT 

Anneal primers at 72° C 
3 min; 
42° C 90 min; 50° C 2 
min, 42° C 2 min, 10 
cycles; 70° C 15 min 
 
Hybrid oligo removed 
by addition of uracil 
DNA glycosylase (37° 
C, 40 min) 

PCR-1 TCTTTCCCTACACGAC
GCTCTTCCGATCT 

TTTTGTCAGTGATGAACGTT 95° C 2 min; 95° C 20 
sec, 70° C 10 sec with -
1° C/cycle, 70° C 30 sec, 
10 cycles; 
95° C 20 sec, 60° C 10 
sec, 70° C 30 sec, 15 
cycles; 70° C 3.5 min 

PCR-2 TCTTTCCCTACACGAC
GCTCTTCCGATCT 

AGTTCAGACGTGTGCTCTTCCGATCT
NNNNGGTACACAGCAGGTTCTGGGT
TCTGGA 

95° C 2 min; 95° C 20 
sec, 60° C 10 sec, 70° C 
30 sec, 8 cycles; 70° C 
3.5 min 

PCR-3 AATGATACGGCGACC
ACCGAGATCTACACTC
TTTCCCTACACGACGC
TCTTCCGATCT 

CAAGCAGAAGACGGCATACGAGATx
xxxxxGTGACTGGAGTTCAGACGTGTG
CTCTTC* 

95° C 2 min; 95° C 20 
sec, 60° C 10 sec, 70° C 
30 sec, 8 cycles; 70° C 
3.5 min 

PCR-4 AATGATACGGCGACC
ACCGAG 

CAAGCAGAAGACGGCATACGA 95° C 2 min; 95° C 20 
sec, 57° C 10 sec, 70° C 
30 sec, 7 cycles; 70° C 
3.5 min 

*xxxxxx designates TruSeq i7 sequence (ACAGTG, GCCAAT, CTTGTA, GTGAAA, CGATGT, TGACCA, CAGATC, 
AGTCAA, ATGTCA, CCGTCC) 
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Materials and Methods 

Mice 

H2-O-deficient mice were kindly provided by Dr. Xinjian Chen at the University 

of Utah School of Medicine, following backcrossing to C57BL/6 mice for 10 

generations. H2-O-/- (DO) mice were further backcrossed at the University of 

Massachusetts Medical School to C57BL/6 mice obtained from Jackson Laboratory 

(Bar Harbor, ME). Heterozygous matings were performed to obtain DO-/- and WT 

littermate controls for experiments. The DO-/- mouse was also bred with B6.Cg-

Foxp3tm1Mal/J (Foxp3GFP) mice, B6.SJL-PtprcaPepcb/BoyJ (Ly5.1) mice, and 

B6.129P2-Tcrbtm1MomTcrdtm1Mom/J (TCRb-/-TCRd-/-) mice purchased from Jackson 

Laboratory, and with YAe62β333,334 and TCRa+/- mice provided by Dr. Eric Huseby 

(University of Massachusetts Medical School). Experiments were performed with 

6-10-week-old mice, unless otherwise indicated, using littermate controls. In 

transfer experiments, congenically-marked nonlittermate mice were age- and sex-

matched. Females hemizygous for the Foxp3sf gene (B6.Cg-Foxp3sf/J) were 

purchased from Jackson Laboratory and bred with C57BL/6 males to 

obtain hemizygous Foxp3sf males, and cell transfer was performed at 1-

2 days of age. All mice were cared for and used in accordance with institutional 

guidelines.  

 

Flow cytometric analysis 

Single-cell suspensions of thymi, lymph nodes (LNs), or spleens were blocked with 

50  µg/ml anti-CD16/CD32 (BioXCell, West Lebanon, NH) prior to antibody 
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staining. Staining was performed with the following antibodies purchased from 

BioLegend (San Diego, CA): TCRβ (H57-597), CD8a (53-6.7), CD44 (IM7), 

CD62L (MEL-14), CD45.1 (A20), CD45.2 (104), B220 (RA3-6B2), PD-1 

(29F.1A12), CD357 (GITR; DTA-1), CD120b (TNF R Type II/p75; TR75-89). 

Antibodies purchased from BD Biosciences (Franklin Lakes, NJ) were TCR Vb8.1, 

8.2 (MR5-2), CD4 (RM4-5), CD25 (PC61), I-Ab (AF6-120.1), Qa-2 (1-1-2), GL7 

(GL7), Fas (Jo2), and CXCR5 (2G8). Antibodies purchased from Thermo Fisher 

Scientific (Waltham, MA) were Foxp3 (FJK-16s), IgD (11-26c), ICOS (C398.4A), 

Live/Dead fixable stain, and streptavidin. The Foxp3/Transcription Factor Staining 

Buffer Set (Thermo Fisher Scientific) was used for fixation and permeabilization 

prior to staining for Foxp3 and EBI3 (R&D Systems, Minneapolis, MN). For 

intracellular cytokine staining, cells were stimulated for 4 hours with 50 ng/ml 

PMA and 1 µg/ml ionomycin (both from Sigma-Aldrich, St. Louis, MO) in the 

presence of GolgiPlug (BD Biosciences), followed by surface staining, fixation and 

permeabilization using the Cytofix/Cytoperm Fixation/Permeabilization Solution 

Kit (BD Biosciences), and staining with IFN-g (BD Biosciences). Mice were 

injected for 3 consecutive days with 1 mg/day of 5-bromo-2’-deoxyuridine (BrdU, 

BD Biosciences), and proliferating cells were detected using the BrdU Flow Kit 

according to the manufacturer’s instructions (BD Biosciences). Analysis of flow 

cytometric data was performed using FlowJo (version 10.3.5, Treestar, Ashland, 

OR). 
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T cell sorting 

For T cell receptor (TCR) sequencing experiments, CD19- cells were isolated by 

negative selection from spleens of DO-/- or WT YAe62β TCRa+/- Foxp3GFP mice 

using the EasySep Mouse CD19 Positive Selection Kit II according to the 

manufacturer’s instructions (Stem Cell Technologies, Cambridge, MA). Sorting 

was performed on a FACSAria (Becton Dickinson, Franklin Lakes, NJ) to isolate 

CD4 naïve T cells (TCRβ+, CD4+, CD8-, I-Ab-, B220-, Foxp3GFP-, CD44low, 

CD62Lhigh), CD8 naïve T cells (TCRβ+, CD8+, CD4-, I-Ab-, B220-, CD44low, 

CD62Lhigh) and Tregs (TCRβ+, CD4+, CD8-, I-Ab-, B220-, CD25+Foxp3GFP+). Prior 

to sorting naïve CD4 T cells (TCRβ+, Live/Dead-, CD4+, CD8-, Foxp3GFP-, CD44low, 

CD62Lhigh), Qa-2low naïve T cells (TCRβ+, Live/Dead-, CD4+, CD8-, Foxp3GFP-, 

CD44low, CD62Lhigh, Qa-2low), or Tregs (TCRβ+, Live/Dead-, CD4+, CD8-, CD25+, 

Foxp3GFP+) from DO-/- or WT Foxp3GFP mice for T cell transfers, CD4+ cells were 

isolated using the mouse CD4+ T cell Isolation Kit according to the manufacturer’s 

instructions (Miltenyi Biotec, Auburn, CA). Tregs were further enriched prior to 

sorting using CD25 microbeads (Miltenyi Biotec). 

 

TCR sequencing 

CD4 naïve T cells (4x106), CD8 naïve T cells (3x106), and Tregs (1x106) were 

sorted as described above from spleens of 3 DO-/- or WT YAe62β TCRa+/- 

Foxp3GFP mice per sample, sorted cells were resuspended in TRIzol reagent 

(Thermo Fisher Scientific), and total RNA was extracted according to the 

manufacturer’s instructions. RNA was reprecipitated using sodium acetate and 
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ethanol359 and subjected to analysis on a fragment analyzer (Agilent Technologies, 

Lexington, MA) to assess RNA quality. cDNA was reverse transcribed, from 1.5 

µg RNA for CD4 and CD8 naïve T cells and from 300 ng RNA for Tregs, and 

sequence libraries prepared as previously described336 with minor modifications, 

including use of TruSeq sequencing and index primers (Illumina, San Diego, CA) 

and variations in PCR conditions. Primers and amplification details are described 

in Table 1. Library sequencing of TCRa (TRAV) chains was performed on a MiSeq 

instrument (Illumina) using 250 bp paired-end reads. Raw data were downsampled 

to the lowest number of sequencing reads per cell type prior to processing using 

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Sequencing reads were 

demultiplexed and UMI-based error correction was performed using MIGEC360 

with a molecular identifier group (MIG) of 3, followed by alignment and clonotype 

assembly using MiXCR361. VDJTools362 was used for all post-processing analysis 

of TCR clonotypes.  

 

Bone marrow chimeras 

Recipient DO-/- and WT Ly5.1 mice were lethally irradiated with 1100 rads in split 

doses, and ~5x106 bone marrow cells isolated from Ly5.2 DO-/- and WT Foxp3GFP 

mice were then injected i.v. for reconstitution. Recipient mice were analyzed for 

Treg frequency and number by flow cytometric analysis 8 weeks later. 
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In vivo suppression assays and T cell transfers 

Transfer of Tregs to Foxp3sf (scurfy) mice was performed as previously 

described348; briefly, Foxp3sf male mice were injected i.p. with 2x105 or 4x105 DO-

/- or WT Tregs on day 1 or 2 of life, and spleen and LNs were isolated from Treg-

injected and control mice at 3 weeks of age. Treg suppression assays were also 

performed in DO-/- and WT TCRb-/-TCRd-/- mice, in which 2x106 DO-/- or WT 

Foxp3GFP- CD4 naïve T cells were transferred i.v., alone or together with 4x105 

congenically-marked DO-/- or WT Tregs; spleen and LNs were harvested 7 days 

later. To assess Treg homeostatic proliferation, 4x106 Ly5.1/2 DO-/- or WT CD4 T 

cells isolated by magnetic bead separation were co-transferred i.v. with 4x105 each 

of congenically-marked DO-/- and WT Tregs into DO-/- or WT TCRb-/-TCRd-/- 

mice, and spleen and LNs were isolated 9 days post-transfer. To evaluate the 

capacity of naïve T cells to convert to Tregs, 1x106 each of congenically-marked 

DO-/- and WT Foxp3GFP- CD4 naïve T cells or 5x105 each of congenically-marked 

Qa-2lowFoxp3GFP- CD4 naïve T cells were co-transferred i.v. into DO-/- or WT 

TCRb-/-TCRd-/- mice, and spleen and LNs were harvested at day 21. Treg 

phenotype was examined in the context of an inflammatory response via i.v. 

transfer of 3x106 Foxp3sf CD4 and CD8 T cells (isolated using the Pan T cell 

Isolation Kit according to the manufacturer’s instructions [Miltenyi Biotec]), 

followed by i.v. transfer of 3x105 each of congenically-marked DO-/- and WT Tregs 

5 days later. Spleen and LNs were then harvested 7 days after Treg co-transfer. 

Mice were age- and sex-matched in all assays. 
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Anti-double-stranded (ds) DNA antibody ELISA 

To assess dsDNA-specific antibodies, high-binding microtiter plates were coated 

overnight at 4°C with 25 µg/ml calf thymus DNA (Sigma-Aldrich, St. Louis, MO). 

Plates were washed with PBS containing 0.05% Tween 20 (PBS-T), and washing 

was performed at each subsequent step. Plates were incubated for 1 h at RT with 

blocking buffer (PBS containing 3% fetal calf serum). Sera diluted at the indicated 

concentrations in blocking buffer were added to plates for 2 h at RT, followed by 

overnight incubation at 4°C with goat anti-mouse IgG(H+L) alkaline phosphatase 

(AP) antibody (Southern Biotech, Birmingham, AL) diluted 1:500 in blocking 

buffer. AP substrate (p-nitrophenyl phosphate, Sigma) was added for 10’ at RT in 

the dark, and the reaction was terminated by addition of 25 µl 5 N NaOH. 

Absorbance was read at 405 nM using a Victor X5 Plate Reader (Perkin Elmer, 

Waltham, MA). 

 

Experimental Sjogren’s syndrome (ESS) model 

Induction of ESS was performed as previously described353, with minor 

modifications. Submandibular salivary glands were isolated from DO-/- and WT 

female mice, homogenized in ice-cold PBS using a Polytron homogenizer 

(Kinematica AG, Lucerne, Switzerland), and centrifuged. Supernatant was 

collected and total protein quantified using a bicinchoninic acid protein assay 

(Thermo Fisher Scientific), and salivary gland protein was emulsified in complete 

Freund’s adjuvant (Thermo Fisher Scientific). DO-/- and WT female littermate mice 

were immunized subcutaneously with a final concentration of 2 mg/ml salivary 
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gland protein, and 2 weeks later mice were rechallenged with 1.25 mg/ml salivary 

gland protein emulsified in incomplete Freund’s adjuvant (Thermo Fisher 

Scientific). Control mice were immunized with adjuvant alone. At 5 weeks 

following the first immunization, serum was collected by cardiac puncture to assess 

anti-dsDNA antibody levels, and cervical lymph nodes were isolated for flow 

cytometric analysis and intracellular cytokine staining. 

 

Histopathology 

Skin, liver, and lung tissues isolated from 21-day-old Foxp3sf and WT mice were 

fixed in 10% formalin, followed by embedding in paraffin and sectioning. Tissue 

sections were stained with hematoxylin and eosin, and images were acquired on a 

Zeiss Axio Observer Z1 (Carl Zeiss, Jena, Germany). Blinded histological 

evaluation was performed as previously described363. 

 

Statistical analysis 

Unpaired nonparametric Mann-Whitney student t-tests and multiple t-tests were 

used to calculate statistical significance. Prism (version 8.01, GraphPad, San Diego, 

CA) was used for statistical analysis and to generate graphical plots. 
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CHAPTER IV 

The nonclassical MHC molecule H2-O is required for efficient recovery from 

influenza A infection 

 

Author contributions: 

I performed all experimental work in this chapter. Liying Lu generated tetramers 

used to identify flu-specific T cells, and the NP311 TCR Tg mouse was generated 

by the Huseby Lab at UMMS. 
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Abstract 

Presentation of peptides derived from foreign antigens on MHC-II molecules is 

necessary for protective immunity against invading pathogens. The nonclassical 

MHC-II molecule DO (HLA-DO in humans, H2-O in mice) modulates the 

repertoire of peptides presented to CD4 T cells through inhibition of the peptide 

exchange factor DM. DO has been shown previously to exert effects on humoral 

immunity in models of immunization and infection, indicative of a role for DO in 

mediating B cell function. Here, we demonstrate that DO plays a role early in the 

response to influenza A, and that DO-deficient mice are unable to recover 

efficiently from A/PR8 infection. Reduced antigen presentation of multiple 

epitopes and dampened epitope-specific T cell responses were observed in 

influenza-infected DO-/- mice compared to WT, with the exception of the NP311-

325 MHC-II epitope, which was presented more efficiently by DO-/- APCs, 

suggesting the hierarchical pattern of influenza epitope presentation is altered in the 

absence of DO. In addition, innate immune cell numbers were reduced, CD8 T cell 

epitope responses were decreased, and cytokine levels were blunted in A/PR8-

infected DO-/- mice compared to WT. Based on this overall pattern of suppressed 

immunity, we reasoned increased Treg numbers were responsible for the observed 

response to influenza A in DO-/- mice, but exploring this potential mechanism 

proved difficult given the models available for Treg depletion. In sum, we show 

that mice lacking DO fail to mount sufficient immunity to influenza A infection 

and demonstrate that DO impacts multiple arms of the immune response. 
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Introduction 

Recognition of antigens presented on MHC-II molecules is a central component of 

the adaptive immune response against invading pathogens. Initiation of this 

response is mediated by acquisition and processing of foreign antigens by antigen-

presenting cells, which then present proteolytically cleaved antigenic peptides on 

MHC-II via cognate interactions with CD4 T lymphocytes364. The helper function 

of activated antigen-specific CD4 T cells is critical for mounting an effective 

immune response through induction and maintenance of CD8 T cell cytotoxic 

activity as well as for selection of plasma and memory B cells in the germinal center 

(GC) reaction365,366. The nonclassical MHC molecule H2-O (hereafter referred to 

as DO) has been shown to play a role in modulating epitope selection in MHC-II 

antigen processing and presentation5,367 and to have effects in the efficiency of the 

immune response to retroviruses259. DO function is exerted through binding and 

inhibition of H2-M (DM), an endosomal/lysosomal-resident molecule which 

mediates CLIP removal from MHC-II, catalyzes peptide exchange, and is 

postulated to edit the peptide repertoire and facilitate greater presentation of 

immunodominant epitopes230,368. We have recently demonstrated that DO increases 

the breadth of the MHC-II self-peptidome by inhibiting DM and allowing for low-

abundance epitopes to be presented, while at the same time reducing presentation 

of other more abundant epitopes369. These observations, together with results of in 

vitro biochemical and crystallographic studies of DO and DM32,207,272,278, support a 

role for DO in shaping the peptide repertoire upon initiation of an immune 

response288,367. Following a pathogenic insult, DO thus may be important in 
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selecting the epitopes that mediate the CD4 T cell response and in doing so, may 

help determine the efficiency of pathogen clearance.  

 DO and DM have been implicated in presentation of MHC-II viral epitopes 

as well as in immune responses to infection or immunization. The effect of DM-

mediated selection of viral epitopes is supported by biochemical work 

demonstrating an association between MHC-peptide stability and immunogenicity 

of vaccinia virus peptides207. In addition, study of DM function in presentation of 

Leishmania major epitopes and in the humoral response to protein antigens in vivo, 

which demonstrated the requirement of DM for the CD4 T cell response to an 

immunodominant MHC-II epitope and for induction of efficient humoral 

immunity, further implicate a role for peptide editing in shaping the adaptive 

immune response289,290. The function of DO in the context of inflammation or 

infection has been primarily shown with regard to antibody-mediated effects. 

Immunization of mice deficient in DO with the model antigens KLH and OVA 

demonstrated reduced IgG antibody responses compared to WT mice288, while 

recent work by Denzin et al. reported increased neutralizing antibodies following 

retroviral infection in mice lacking DO259. In vivo modulation of DO in the B cell 

response to haptenated antigens also suggests that lack of DO expression in B cells 

confers a competitive advantage for entry into germinal centers292. With regard to 

the effect of DO on T cell responses following immunization, diminished IL-2 and 

IFN-g production by CD4 T cells was observed when DO was absent, attributed to 

a deficiency in antigen presentation288. These data indicate that expression of DO 
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influences cellular responses in adaptive immunity, presumably due to modulation 

of epitopes presented on MHC-II. 

Here, we sought to examine the effect of DO on the immune response to 

influenza A. Clearance of and protection from influenza virus has been definitively 

shown to be dependent upon CD8 T cells and the antibody response370-373, whereas 

the helper function of CD4 T cells appears most critical for effective recovery from 

influenza infection372-374. Recent work has also highlighted the contributions of 

cytolytic CD4 T cells (ThCTL) and T follicular helper (Tfh) cells, as well as innate 

immune subsets including natural killer (NK), NKT, and mast cells during infection 

with influenza375-381. Based on the function of DO in MHC-II epitope selection, we 

reasoned that lack of DO would skew presentation of influenza-derived epitopes 

and alter the efficiency of the immune response following infection. We inoculated 

both DO-/- and WT mice with influenza A and observed a marked delay in recovery 

from influenza infection in DO-/- mice compared to WT. Lymphocytes failed to 

proliferate in the absence of DO to the same degree as in WT mice, resulting in 

substantially fewer cell numbers and reduced epitope-specific responses in both 

CD4 and CD8 T cells. Antigen presentation early in infection was shown to be 

altered in the absence of DO, with reduced numbers of dendritic cells (DCs) and 

NK cells in the lung. Cytokine responses were similarly blunted early in infection 

and at the peak of the T cell response. Based on this overall pattern of suppression 

as well as on increased Treg numbers in the DO-/- mouse, we examined whether 

augmented Treg function was responsible for the defect in the immune response to 

influenza A in the DO-/- mouse. While we found numbers of lung-resident Tregs to 
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be increased in the DO-/- mouse, attributing the defect observed to altered Treg 

function proved difficult due to nonspecific effects of Treg depletion methods. 

Thus, while we cannot conclusively determine whether Tregs are responsible for 

the overall suppression of the immune response to influenza A in the DO-/- mouse, 

we demonstrate the requirement of DO for efficient recovery from infection and 

show that DO is necessary to establish sufficient innate and adaptive immunity to 

influenza A. 

 

Results 

DO is required for efficient recovery from influenza A infection 

In order to determine whether DO plays a role in the immune response to influenza, 

DO-/- and WT littermate mice were inoculated with a sublethal dose of influenza A 
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(PR8, 0.5 LD50) via intranasal instillation and then monitored for 21 days 

following infection. Recovery from weight loss associated with influenza infection 

occurred at approximately 14 days post-inoculation in WT mice, as has been 

previously demonstrated382,383, whereas in DO-/- mice this recovery was shown to 

be markedly delayed (Figure 4.1A). DO-/- mice displayed greater weight loss 

overall, with an approximate 7-day delay in complete recovery (Figure 4.1A). In 

addition, in each experiment in which mice were inoculated and weight loss 

monitored, 1 out of 5 DO-/- mice lost >30% of its initial body weight and exhibited 

significant moribundity, requiring that it be sacrificed prior to completion of the 

experiment due to the physical symptoms associated with lethality of infection 

(Figure 4.1A). These data suggest that expression of DO plays a substantial role in 

the immune response to influenza infection. Isolation of lung tissue and quantitation 

of viral titers post-infection demonstrated slight increases in viral titers (Figure 

4.1C) at later time points in infection in DO-/- mice compared to WT, indicative of 

a deficiency in the immune response. Mice were also rechallenged with a lethal 

dose of heterosubtypic influenza virus (A/Philippines, 300 LD50) at day 45 

Figure 4.1. DO is required for efficient recovery from influenza A infection. (A) DO-/- and WT 
mice were inoculated via intranasal instillation with 0.5 LD50 A/PR8 (H1N1) and weighed daily 
for 21 days. In each cohort of 5 mice inoculated, 1 out of 5 DO-/- mice was sacrificed (denoted by 
†) due to significant moribundity associated with infection. Results shown (mean ± standard error 
of mean [SEM]) are compiled from 3 independent experiments, with 5 mice/group/experiment. 
Statistical analysis of survival using the Gehan-Breslow-Wilcoxon test showed a p-value of 0.038, 
while two-way ANOVA (using a mixed-effects model with the Geisser-Greenhouse correction) 
yielded a p-value<0.0001 (***). (B) At day 45 post-infection with A/PR8 and after complete 
recovery, DO-/- and WT mice were rechallenged with 300 LD50 A/Philippines (H3N2). Results are 
compiled from 2 independent experiments, with 4-5 mice/group/experiment. Mean ± SEM shown. 
(C) Viral titers were determined by quantification of the A/PR8 polymerase gene in lung 
homogenates over time following infection with 0.5 LD50 A/PR8. Data are shown from 2 
independent experiments, with 2-4 mice/group, with mean ± SD. (D) Isotype antibody titers were 
determined by serial dilution of sera isolated at day 21 from DO-/- and WT mice post-infection with 
A/PR8. Data are compiled from 2 independent experiments, with 4-5 mice/group/experiment, and 
mean ± SD shown. Unpaired parametric t-tests were performed, unless otherwise indicated. 
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following infection with PR8. No differences were observed between DO-/- and WT 

mice in their capacity to recover from heterosubtypic viral challenge (Figure 4.1B), 

for which clearance is mediated primarily by the memory T cell response. 

Influenza-specific antibody isotype titers at day 21 post-infection with PR8 

appeared unimpaired in DO-/- mice (Figure 4.1D). These data, together with the role 

of DO in antigen presentation, point to alterations in the primary T cell response as 

the likely basis for the deficiency of mice lacking DO in recovery from influenza 

infection.   

 

Lymphoid tissue cellularity and T cell responses are diminished in influenza-

infected DO-/- mice 

To understand the basis for increased susceptibility of DO-/- mice to primary 

influenza infection, DO-/- and WT mice were examined at several time points post-

infection with 0.5 LD50 PR8. At day 4 following infection, the mediastinal lymph 

nodes (draining LNs [dLNs]) and lungs of DO-/- mice displayed fewer total cells 

compared to LNs and lungs from WT mice (Figure 4.2A). By day 8 post-infection, 

spleens and dLNs isolated from DO-/- mice showed substantially diminished 

cellularity compared to WT mice, with total cell numbers decreased by 

approximately half (Figure 4.2A-B). While frequencies of the cell subsets that 

predominate in the spleen and dLN were not shown to be different between DO-/- 

and WT mice (Figure 4.2C-E), injection of BrdU prior to isolation of lungs, spleen, 

and dLNs at day 8 demonstrated reduced proliferation of CD4 T and CD8 T cells, 

as well as B cells, although to a lesser extent (Figure 4.3A-B). Reduced lung and 
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lymphoid tissue cellularity in DO-/- mice thus appeared not to be attributed to a 

deficient response in any one cell type, but rather to a reduced capacity of 

lymphocytes to respond and proliferate in DO-/- mice following influenza infection.  
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Figure 4.2. DO deficiency results in diminished lymphoid and lung tissue cellularity 
following influenza A infection. (A) Total cellularity of lungs, dLNs, and spleens in uninfected 
DO-/- and WT mice and over time following A/PR8 infection (0.5 LD50) is shown. (B) Spleens 
isolated from DO-/- and WT littermate mice at day 8 post-infection are depicted. (C) Frequency 
and number of CD4 T cells (CD4+CD8-) in lungs, dLNs, and spleens of DO-/- and WT mice are 
shown before infection and over time following infection with A/PR8. (D) Frequency and number 
of CD8 T cells (CD8+CD4-) in lungs, dLNs, and spleens of DO-/- and WT mice are shown before 
infection and over time following infection with A/PR8. (E) Frequency and number of B cells 
(B220+) in lungs, dLNs, and spleens of DO-/- and WT mice are shown before infection and over 
time following infection with A/PR8. Data are compiled from 2-3 independent experiments, with 
3-5 mice/group. Unpaired parametric t-tests were performed, mean ± SEM shown, *p<0.05, 
***p<0.001. 
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DO alters presentation of influenza-derived CD4 T cell epitopes  

Several MHC-II-restricted influenza A epitopes have been recently demonstrated 

to be presented in a DM-dependent manner293, highlighting the impact of peptide 

editing on influenza-specific T cell responses. To determine the effect of DO on 

presentation of individual epitopes during influenza A infection, we used lung and 

dLN cells isolated from DO-/- and WT mice at day 4 post-infection as APCs to 
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Figure 4.3. DO alters presentation of influenza-derived epitopes. (A) Injection of BrdU 24h 
prior to analysis at day 8 post-infection was performed to examine proliferation of CD4 (gated on 
CD4+CD8-) and CD8 (gated of CD8+CD4-) T cells, as well as B cells (gated on B220+) in DO-/- 
and WT mice. Representative overlaid histograms are shown for anti-BrdU staining in lungs of 
infected mice. (B) Quantification of proliferation by anti-BrdU is shown for CD4 T cells, CD8 T 
cells, and B cells in DO-/- and WT mice, compiled from 3 experiments, with 3-5 
mice/group/experiment. (C) Antigen presentation of the influenza epitopes NA25, NA41, NP45, 
and HA16 by DO-/- lung and dLN APCs was shown to be reduced compared to presentation by 
WT APCs following co-culture with T cell hybridomas specific for each epitope. (D) NP311-
specific CD4 T cells were co-cultured with lung and dLN APCs isolated at day 4 post-infection 
from DO-/- and WT mice, and T cell proliferation was measured by dilution of Cell Trace Violet. 
Representative histograms shown. (E) The division index, or the average number of divisions cells 
underwent in the original population, was determined for NP311-specific CD4 T cells stimulated 
with DO-/- lung or dLN APCs compared to WT APCs. Data are shown for 2 independent 
experiments, with APCs isolated from 4-6 mice/group/experiment. Unpaired parametric t-tests 
were performed, mean ± SD shown, *p<0.05, **p<0.01, ***p<0.001. 
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stimulate T cell hybrids specific for the NA25, NA41, NP45, and HA16 epitopes 

(Table 4.1). For every epitope tested, T cell stimulation was shown to be reduced 

in response to presentation by DO-/- APCs (Figure 4.3C). We similarly assessed 

Figure 4.4. Innate cellular and cytokine responses are diminished during influenza A 
infection when DO is absent. (A) DCs were identified by expression of CD11c and MHC-II (I-
Ab), following elimination of the lymphocyte population by visualization of cells by FSC and SSC. 
Representative plot shown for DO-/- and WT lung samples at day 4 post-infection. (B) 
Quantification of DCs in DO-/- and WT lungs at day 4 post-infection by frequency (left) and number 
(right). Data are shown for 3 independent experiments, with 3-5 mice/group/experiment. (C) NK 
cells were identified by expression of NK1.1 and lack of co-expression of CD3. Representative 
plot shown for DO-/- and WT lung samples at day 4 post-infection. (D) Quantification of NK cells 
in DO-/- and WT lungs at day 4 post-infection by frequency (left) and number (right). Data are 
shown for 3 independent experiments, with 3-5 mice/group/experiment. (E) Analysis of G-CSF, 
IL-6, IFN-g, and IL-2 in sera isolated from A/PR8-infected DO-/- and WT mice at days 4 and 8 
post-infection. Data are compiled from 2-3 independent experiments, with 3-4 
mice/group/experiment. Unpaired parametric t-tests were performed, mean ± SD shown, *p<0.05, 
**p<0.01, ***p<0.001. 
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presentation by lung and dLN APCs to T cells specific for the NP311 epitope (Table 

4.1), for which a TCR transgenic mouse model was recently generated. In contrast 

to T cell activation by other epitopes (Figure 4.3C), NP311-specific CD4 T cells 

were shown to proliferate to a greater degree when stimulated with infected DO-/- 

APCs compared to WT (Figure 4.3D-E). These data suggest that in the absence of 

DO, presentation of influenza-derived epitopes is skewed, with much of the 

response reduced compared to WT. We next assessed DC frequency and number in 

lungs at day 4 post-infection to determine whether antigen presentation is in large 

part reduced due to fewer professional APCs. Frequencies and numbers of DCs 

were reduced in the lungs of DO-/- mice at day 4 post-infection compared to WT 

(Figure 4.4A-B). In addition, NK cells were shown to be reduced in frequency and 

number (Figure 4.4C-D), suggesting innate immunity is also compromised in the 

absence of DO. Levels of IL-6 and G-CSF, both of which participate in the innate 

immune response early in influenza infection, were reduced in mice lacking DO at 

day 4 post-infection (Figure 4.4E), suggesting defective immunity is induced early 

in infection when DO is absent. 

 

Lack of DO diminishes epitope-specific T cell responses  

Altered antigen presentation in the DO-/- mouse early in infection is likely to affect 

the magnitude of T cell responses elicited later in infection, which would 

presumably impact the efficiency of the overall immune response to influenza A. 

At day 8 post-infection, we observed reduced IFN- g and IL-2 levels in DO-/- 

compared to WT mice (Figure 4.4E). We next examined influenza epitope-specific 
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T cell responses in lung, dLN, and spleen using MHC-I (Db) and MHC-II (I-Ab) 

tetramers (Figure 4.5A). Frequencies of some epitopes were found to be 

significantly decreased in DO-/- mice, while others showed a downward trend 

Figure 4.5. Lack of DO reduces epitope-specific CD4 and CD8 T cell responses in influenza A 
infection. (A) Epitope-specific responses were assessed using I-Ab tetramers specific for the CD4 
T cell epitopes HA16, NP45, NP311, NA41, NA110, and NS1-19 (gated on CD4+CD8-CD44high), 
as well as Db tetramers specific for the CD8 T cell epitopes NP366 and PA224 (gated on CD8+CD4-

CD44high). Representative dotplots are shown for each tetramer for DO-/- and WT lung samples at 
day 8 post-infection. (B-D) Epitope-specific T cell responses were quantified in lung (B), dLN (C), 
and spleen (D) in DO-/- and WT mice at day 8 post-infection with regard to frequency and number. 
(E) Transferred NP311 Tg CD4 T cells were identified by staining for the NP311 I-Ab tetramer and 
lack of staining for a congenic marker, gated on TCRb+CD4+CD8- T cells. Representative dotplots 
of DO-/- and WT lung samples shown. (F) Transferred NP311-specific T cells were identified as in 
(E) and quantified in lungs, dLNs, and spleens of DO-/- and WT recipient mice by frequency and 
number. Data are compiled from 2 independent experiments, with 3-4 mice/group/experiment. 
Unpaired parametric t-tests were performed, mean ± SD shown, *p<0.05, **p<0.01, ***p<0.001. 
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(Figure 4.5B-D). Responses to the NP311 epitope again were shown to be distinct, 

with increased, albeit minor, frequencies of NP311-specific T cells observed in all 

tissues (Figure 4.5B-D). When total cell numbers of tetramer-positive CD4 and 

CD8 T cells were determined, the downward trend in DO-/- mice became more 

apparent, particularly in lymphoid tissue (Figure 4.5B-D). Given that a TCR Tg 

mouse model that expresses a TCR specific for the NP311 epitope is available, we 

examined the ability of NP311 Tg CD4 T cells to proliferate and expand in DO-/-  

vs. WT mice, with the idea that comparison of T cell proliferation using an identical 

cellular source (i.e. one that is unaffected by possible differences in T cell selection 

due to DO) may provide insight into the mechanism of reduced T cell responses in 

the DO-/- mouse. Similar to results observed in NP311-specific responses at day 8, 

NP311 Tg CD4 T cells were found to be greater in frequency in the DO-/- mouse, 

while total cell numbers were unchanged or reduced (Figure 4.5E-F). Taken 

together, these data suggest that T cell responses in the absence of DO are 

insufficiently generated, and even that responses specific for an epitope that is 

likely DM-resistant and presented at greater density are suppressed in the DO-/- 

mouse. 

 

Depletion of Tregs in DO-/- mice 

The overall effect of DO deficiency in influenza A appears to result in a blunted 

immune response, beginning with innate immunity and continuing into the adaptive 

immune response. With the exception of presentation of the NP311 epitope, 

multiple arms of cellular immunity are diminished in the DO-/- mouse, including 
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CD8 T cell responses, for which DO is unlikely to exert direct effects. We have 

previously observed increased Treg numbers in lymphoid tissue and thymus in the 

DO-/- mouse (unpublished results); when frequency and numbers of Tregs in the 

lung before and during influenza infection were examined, similar increases in lung 

tissue Tregs were observed in DO-/- compared to WT mice (Figure 4.6A-B). To test 

for a functional contribution of Tregs in the deficient immune response to influenza 

A in DO-/- mice, we used a model commonly used for Treg depletion384,385, in which 

the diphtheria toxin (DT) receptor fused to GFP was inserted into exon 11 of the 

Foxp3 gene, allowing for depletion of Foxp3-expressing cells upon DT 

administration. We observed efficient ablation of Tregs in both DO-/- and WT mice 

Figure 4.6. Tregs are increased in lungs of DO-/- mice.  (A) Lung Tregs were identified as 
CD25+Foxp3+ (following gating on CD4+CD8-). Representative dotplots are shown for lung 
samples of DO-/- and WT before infection. (B) Quantification of lung Tregs before and following 
A/PR8 infection (0.3 LD50) in DO-/- and WT mice is shown. Data are compiled from 3 
independent experiments, with 3-5 mice/group/experiment. (C) dLN Treg frequencies, identified 
as in (A), are shown with and without administration of 2 consecutive doses of 40 mg/kg DT at 
days -1 and 0 before infection with 0.3 LD50 PR8. Representative dotplots shown. (D) dLN 
cellularity (left) and lung NK cell number (right) are shown for untreated DO-/- and WT mice, 
and for DTR-expressing or non-DTR-expressing DO-/- and WT mice treated with DT. Data 
represent 2-3 independent experiments, with 3-4 mice/group/experiment. Unpaired parametric t-
tests were performed, mean ± SD shown, *p<0.05, **p<0.01, ***p<0.001. 
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using this model (Figure 4.6C), which resulted in reversal of DO-dependent defects 

in cellularity and NK cells (Figure 4.6D). However, we also observed that control 

DO-/- mice, which did not express the DT receptor but which were administered 

DT, did not recapitulate the phenotype that had been observed in the absence of DT 

(Figure 4.6D). DT has been shown previously to induce nonspecific 

inflammation386,387, and so in this model we are unable to discern whether Tregs 

modulate the immune response to influenza A in the DO-/- mouse. 

 

Discussion 

The nonclassical MHC-II molecule DO serves to modulate the immunopeptidome 

and has been shown previously to play a role in the immune response to pathogens. 

The principal effect of DO or DM reported thus far in models of immunization or 

infection has been in mediating antibody production259,288. We show here that DO 

also functions early in infection, prior to induction of humoral immunity. Following 

inoculation with influenza A, DO is demonstrated to be required for efficient 

recovery, with DO-/- mice exhibiting a pronounced delay in their capacity to regain 

weight, as well as increased morbidity. The secondary lymphoid organs in which 

antigen presentation and T cell expansion occurs most efficiently in influenza 

infection were shown to be dramatically reduced in size and cellularity in DO-/- 

mice, and injection of BrdU demonstrated a deficiency in T cell proliferation when 

DO was absent. We observed a skewed pattern of epitope-specific responses and 

identified an influenza-derived epitope that is likely resistant to DM editing and 

therefore presented more efficiently by DO-/- APCs compared to WT. Out of the 
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panel of 7 CD4 epitopes for which we examined antigen presentation and T cell 

responses, we found the NP311 epitope to be presented better by DO-/- APCs 

compared to WT, while presentation of the remaining 6 epitopes were dampened 

in DO-/- mice. The overall pattern of epitope-specific T cell responses thus appears 

to be one that is suppressed in DO-/- mice compared to WT, with T cell responses 

to the NP311 epitope slightly increased. When NP311 Tg T cells were adoptively 

transferred at the time of infection into DO-/- and WT mice to assess their 

proliferative capacity independent of any possible differences in thymic selection 

of conventional CD4 T cells (which could affect NP311-specific responses in the 

DO-/- vs. WT mouse), their frequency was found to be greater in DO-/- mice, but 

their numbers were comparatively lower or unchanged. Based on these results, as 

well as based on our observations that CD8 T cell responses were diminished, lung 

APCs and innate immune cells were reduced in number, and cytokine levels were 

decreased, we reasoned that nonspecific suppression of the immune response by 

Tregs could account for the observed phenotype in influenza A-infected DO-/- mice. 

Tregs have been shown previously to suppress innate immunity and NK cell 

function177,388,389; in an experimental model of HSV infection, Tregs have also been 

shown to be important in coordinating recruitment of immune cells to the site of 

infection384. We have observed increased frequencies and numbers of Tregs in 

thymus and lymphoid tissue of the DO-/- mouse (Chapter III), and here we further 

report increased lung tissue Tregs when DO is absent. We therefore hypothesized 

that enhanced Treg function was responsible for the global suppressive effect 

observed in the absence of DO during influenza A infection. To test this hypothesis, 
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we used a model of DT-induced depletion of Tregs, but experimental results proved 

difficult to interpret, likely due to inflammation induced by DT administration. 

Tregs have been shown to limit the efficacy of immunity in models of infection390-

392, demonstrated by the effects of Treg depletion. In our model, however, we 

postulate that increased activity of Tregs in the DO-/- mouse results in insufficient 

immunity compared to WT. Administration of DT appears to increase 

inflammation to such a degree that effects on the immune response are no longer 

observed in the DO-/- mouse. At present, we are therefore unable to conclude 

whether the multiple defects in the immune response to influenza A in the absence 

of DO is due to Tregs. DT administration could conceivably affect multiple arms 

of immunity, and so it is also possible that an alternate mechanism may account for 

the phenotype observed in DO-/- mice following infection. 

In summary, we show that DO is required for efficient recovery from 

influenza A infection, and that mice deficient in DO display defective innate and 

adaptive immune responses following A/PR8 infection. We identify an influenza-

derived epitope uniquely affected by DO, and show that the predominant effect of 

DO ablation is to compromise effective immunity to influenza A. These data 

suggest that modulation of DO expression plays a critical role in the efficacy of the 

immune response to pathogens. 
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Table 4.1. Influenza-derived epitopes 

Epitope Protein  Sequence 

HA16 Hemagglutinin RSWSYIVETPNSENGIC 

NA25 Neuraminidase GDVFVIREPFISCSH  

 

NA41 Neuraminidase SVAWSASASHDGMGW 

NA110 Neuraminidase TVDWSWPDGAELPFT 

NP45 Nucleoprotein LILRGSVAHKSCLPACV  

NP311 Nucleoprotein QVYSLIRPNENPAHK 

NP366 Nucleoprotein ASNENMETM 

NS1-19 Nonstructural protein 1 KQKVAGPLSIRMDQAIM 

PA224 Polymerase SSLENFRAYV 
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Materials and Methods 

Mice 

H2-O-deficient mice were provided by Dr. Xinjian Chen (University of Utah 

School of Medicine) after backcrossing to C57BL/6 mice for 10 generations, and 

these mice were further backcrossed at the University of Massachusetts Medical 

School to C57BL/6 mice obtained from Jackson Laboratory (Bar Harbor, ME). 

Heterozygous matings were performed to obtain DO-/- and WT littermate controls 

for experiments. The DO-/- mouse was also bred with B6.129(Cg)-

Foxp3tm3(DTR/GFP)Ayr/J (Foxp3DTR) mice and B6.SJL-PtprcaPepcb/BoyJ (Ly5.1) 

mice for select experiments. Mice carrying a transgenic TCR specific for I-Ab and 

the immunodominant NP311 peptide were generated by Dr. Eric Huseby 

(University of Massachusetts Medical School) and will be described in detail 

elsewhere. 8-10-week-old mice were inoculated with influenza as described below. 

All mice were cared for and used in accordance with institutional guidelines.  

 

Viral stocks and infection 

Viral stocks (A/PR/8/1934[H1N1] and A/Philippines/2/82/x-79[H3N2]) were 

kindly provided by the laboratory of Dr. Susan Swain, and mice were inoculated 

via intranasal instillation as previously described393,394. Briefly, mice were 

anesthesized with isoflurane (Patterson Veterinary Supply, Devens, MA) via 

inhalation using a vaporizer chamber (VetEquip, Livermore, CA), and mice were 

then inoculated intranasally with 0.5 LD50 A/PR8 (unless otherwise indicated) or 

300 LD50 A/Philippines in 50 µl PBS. 



 152 

 

Viral titer quantitation 

Viral titers were assessed by quantifying copy number of the A/PR8 polymerase 

(PA) gene as previously described393,394. RNA was isolated from whole lung 

homogenates using TRIzol (Thermo Fisher Scientific), together with the E.Z.N.A. 

RNA isolation kit (Omega Bio-Tek, Norcross, GA) and the TURBO DNA-free kit 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. Reverse 

transcription was performed using 2.5 μg RNA with random hexamer primers and 

Superscript II Reverse Transcriptase (Thermo Fisher Scientific). The PA gene was 

quantified by PCR using the Bio-Rad CFX96 Realtime PCR system (Bio-Rad, 

Hercules, CA) with 50 ng of cDNA per reaction and the following primers and 

probe: forward primer, 5′-CGGTCCAAATTCCTGCTGA-3′; reverse primer, 

5′CATTGGGTTCCTTCCATCCA-3′; probe, 5′-6-FAM-

CCAAGTCATGAAGGAGAGGGAATACCGCT-3′, provided by the Trudeau 

Institute Molecular Biology Core Facility (Saranac Lake, NY). The copy number 

of the PA gene per 50 ng of cDNA was calculated using a PA-containing plasmid 

of known concentration as a standard, which was then used to calculate PA copy 

number per lung. 

 

Influenza-specific antibody isotype titer quantitation 

Quantitation of A/PR8-specific antibody titers was performed as previously 

described395. Briefly, microtiter plates were coated overnight with 107 A/PR8 virus 

and then were washed and blocked with PBS containing 0.05% Tween 20 and 1% 
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BSA (blocking buffer). Washing was performed at each step. Serum samples 

isolated at day 21 post-infection were serially diluted in blocking buffer, added to 

pre-coated plates, and incubated for 2 h at room temperature (RT). HRP-conjugated 

anti-mouse antibodies specific for total IgM, IgG, IgG1, IgG2a, or IgG2b (Southern 

Biotech, Birmingham, AL) were added to plates at 0.5 µg/ml in blocking buffer for 

1 h at RT. Substrate (o-phenylenediamine dihydrochloride, Sigma-Aldrich, St. 

Louis, MO) was then added, and the reaction was terminated by addition of sulfuric 

acid. The colorimetric reaction was read at 492 nM using a Victor X5 Plate Reader 

(Perkin Elmer, Waltham, MA). Endpoint serum titers were determined by 

comparison to unimmunized mice (negative controls). 

 

I-Ab tetramer generation 

Protein expression of I-Ab monomers was performed by infection of Hi5 insect cells 

(Thermo Fisher Scientific) with recombinant baculovirus generated by co-

transfecting linearized baculovirus DNA together with a construct into which 

influenza A-derived peptides were cloned. Supernatant was collected, and protein 

purification was performed by affinity purification using rat anti-mouse MHC-II 

antibody (M5/114). Biotinylation was performed using BirA ligase (Avidity, 

Aurora, CO), followed by purification by gel filtration. Tetramerization was 

performed by addition of fluorescently-labeled streptavidin (Prozyme, Hayward, 

CA) at 10-minute intervals. 
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Flow cytometry 

Single-cell suspensions of lungs (following perfusion through the right ventricle 

with 10 ml PBS), draining lymph nodes (dLNs), or spleens were blocked with 

50 µg/ml anti-CD16/CD32 (BioXCell, West Lebanon, NH) prior to antibody 

staining. Staining was performed with the following antibodies purchased from 

BioLegend (San Diego, CA): TCRβ (H57-597), CD3 (145-2C11), CD8a (53-6.7), 

CD11c (N418), CD44 (IM7), CD45.1 (A20), and B220 (RA3-6B2), and NK1.1 

(PK136). Antibodies purchased from BD Biosciences (Franklin Lakes, NJ) were 

CD4 (RM4-5), CD25 (PC61), and I-Ab (AF6-120.1). Antibodies purchased from 

Thermo Fisher Scientific (Waltham, MA) were Foxp3 (FJK-16s) and Live/Dead 

fixable stain. For MHC-II tetramer staining, cells were surface-stained, washed, 

then incubated with 6 µM monomer for 1 h at 37° C. MHC-I tetramers were 

provided by the NIH Tetramer Core Facility (Atlanta, GA); cell were surface-

stained, washed, and incubated with 1:200 tetramer at 4° C for 1 h. The 

Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific) was 

used for fixation and permeabilization prior to staining for Foxp3. Mice were 

injected 24 h prior to sacrifice with 1 mg of 5-bromo-2’-deoxyuridine (BrdU, BD 

Biosciences), and proliferating cells were detected using the BrdU Flow Kit 

according to the manufacturer’s instructions (BD Biosciences). Analysis of flow 

cytometric data was performed using FlowJo (version 10.3.5, Treestar, Ashland, 

OR). 

 



 155 

Antigen presentation assays 

Lung and draining LNs (dLNs) were isolated on day 4 post-infection, and single-

cell suspensions were irradiated with 2500 rads. 105 lung or dLN cells were 

incubated with 105 per well of T cell hybrids specific for the influenza epitopes 

NA25, NA41, NP45, and HA16, kindly provided by the laboratory of Dr. Laurence 

Eisenlohr (University of Pennsylvania)293. Following overnight incubation at 37° 

C, 5% CO2, substrate (methyl-umbelliferyl-β-D-galactoside [MUG], Sigma 

Aldrich) was added for 1 h at 37° C, 5% CO2, and fluorescence (365/445) was read 

using a Victor X5 Plate Reader (Perkin Elmer, Waltham, MA). MUG units for each 

hybrid were determined by subtracting background fluorescence (from 105 T cell 

hybrids alone). Similar assays were performed with CD4 T cells isolated by 

negative selection from spleens of the NP311 mouse using the CD4+ T cell Isolation 

Kit (Miltenyi Biotec, Auburn, CA) according to the manufacturer’s instructions. 

CD4 T cells were labeled with Cell Trace Violet (Thermo Fisher Scientific) 

according to the manufacturer’s instructions, and 105 CD4 T cells/well were co-

cultured with 105 lung and dLN cells for 3 days. Proliferation was assessed by 

dilution of Cell Trace Violet following co-staining with anti-mouse CD4 and CD8 

antibodies, as well as Live/Dead fixable stain (Thermo Fisher Scientific), by flow 

cytometric analysis. 

 

ELISA  

Cytokine ELISA kits to assess serum levels of IL-2, IL-6, and IFN-g were 

purchased from BD Biosciences and/or BioLegend, and cytokine levels were 
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determined according to the manufacturer’s instructions. Levels of G-CSF were 

quantified using a kit purchased from R&D Systems (Minneapolis, MN) according 

to the manufacturer’s instructions. 

 

CD4 T cell transfer 

CD4 T cells were isolated from spleens of NP311 Tg mice as indicated above, and 

5x104 CD4 NP311 Tg T cells were injected i.v. at the time of A/PR8 infection into 

congenically-marked (Ly5.1) DO-/- and WT mice. Frequencies and numbers of 

NP311 Tg T cells were examined in lung, dLN, and spleen at day 7 post-infection. 

 

Treg depletion 

DO-/- and WT littermate Foxp3DTR were injected i.p. on days -1 and 0 with 40 mg/kg 

diphtheria toxin (DT) (Sigma Aldrich) before infection, followed by intranasal 

instillation of 0.3 LD50 A/PR8 as described above.  

 

Statistical analysis 

Unpaired parametric student t-tests, two-way ANOVA, and the Gehan-Breslow-

Wilcoxon test for survival were used to calculate statistical significance. Prism 

(version 8.01, GraphPad, San Diego, CA) was used for statistical analysis and to 

generate graphical plots. 
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CHAPTER V 

Conclusions and future directions 

 

Summary of dissertation studies 

 

The results presented in this work provide insight into the biological effects of the 

non-classical MHC-II molecule DO in several facets of MHC-II antigen 

presentation. We first demonstrate the global effect of DO on the MHC-II 

peptidome, and in doing so reconcile previous studies in which inconsistent results 

were reported. We have definitively determined, as shown in Chapter II, that DO 

functions to broaden the immunopeptidome. In the absence of DO, many fewer 

peptide species are presented, resulting in greater density of more abundant 

epitopes. The results of this study informed our examination of DO function in T 

cell selection, presented in Chapter III. Based on thymic expression of DO, which 

had been reported but for which effects had not been explored, we reasoned that 

DO could impact selection of both conventional CD4 T cells and Tregs. We show 

that the predominant effect of thymic expression of DO is on the Treg population, 

and that perturbation of DO alters Treg function, phenotype, and differentiation into 

Tfr. We further show that lack of DO augments autoantibody production associated 

with development of autoimmunity. These data also provide a potential explanation 

for expression of DO in both the thymus and periphery, such that modulation of the 

self-peptidome by DO may have evolved to improve self-tolerance specifically 

with respect to Treg selection and function. In Chapter IV, studies examining the 
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role of DO in influenza A are presented. DO-/- mice failed to recover efficiently 

from infection, and we demonstrate multiple deficiencies in innate and adaptive 

immunity in the absence of DO. DO is shown for the first time to play a role in 

effective T cell responses during infection, and to alter in vivo presentation of 

epitopes derived from a pathogen. Taken together, these data describe novel 

implications of DO expression important in the biology of autoimmunity and in the 

immune response to infection. 

 

Challenges and limitations in the study of DO biology 

 

Several aspects of the work presented here have proven challenging in furthering 

our understanding of the biological function of DO. First, DO is expressed by 

multiple cell types. Although DO is more restricted in its expression than MHC-II 

or DM, its expression in both the thymus and periphery may impact central 

tolerance mechanisms and peripheral MHC-II antigen presentation. In models of 

infection, for example, the precise effects of DO are difficult to tease apart, given 

that antigen specificities of conventional T cells may be altered, Tregs are affected 

both in number and likely in their specificity, and hierarchical epitope patterns may 

be changed during an immune response in the DO-/- mouse. Generation of a 

conditional DO knockout mouse, using Cre-lox or CRISPR/Cas9 technology to 

target DO in particular cell lineages, would help to overcome the challenge 

associated with DO expression in multiple cell types. Another difficulty in this 

project arises from that fact the effect of DO on the peptide repertoire and on T cell 
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selection is small (although reproducible). As with any small effect, current 

experimental tools available may be insufficient to precisely measure all DO-

dependent differences. Lastly, DO exerts its function by inhibiting DM, which both 

removes CLIP from MHC-II dimers and acts as a peptide exchange factor. DO is 

thus implicitly linked to a second molecule, which for MHC alleles with high 

affinity for CLIP, also performs two functions. The factors that affect study of DO 

thus become multiplicative, and include differential DM sensitivity of various 

epitopes, CLIP affinity for MHC-II, pH susceptibility of the DO/DM complex, and 

regulation of DO and DM expression. The sum of these factors makes discerning 

the function of DO, particularly for in vivo studies, quite complex. 

 

DO broadens the MHC-II immunopeptidome: future studies 

 

We have shown that at the cellular level, DO functions to increase the breadth and 

diversity of the MHC-II immunopeptidome. Peptides were eluted from human B 

cell lines as well as from murine B cells, and we importantly demonstrate through 

immunization experiments that differential presentation of peptides due to DO 

expression has consequences for T cell activation. Results of our study could be 

extended by examination of the effects of DO overexpression, perhaps by 

transduction of a tetracycline-inducible construct to allow for modulation and 

control of DO levels. We would expect that the peptidome would become 

increasingly diverse as DO expression increases, although the DO/DM ratio would 

require careful calibration so that DM activity is sufficient for CLIP removal. We 
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also examined the effect of DO on the overall peptide repertoire only in B cells, 

where DO has been shown to be most highly expressed. Peptide elution using other 

DO-expressing cell types, including DCs and mTECs, could provide further insight 

into DO function in tolerance and immunity, as would elution studies in models of 

infection. In addition, examination of the effect of pH susceptibility of the DO/DM 

interaction as it relates to the peptides presented, perhaps by manipulation of 

endosomal pH, would further our understanding of the effects of DM inhibition by 

DO and may reconcile differences between the two models currently proposed for 

DO function (i.e. focusing antigen presentation on late endo/lysosomes vs. 

broadening the immunopeptidome).  

 

DO modulates the Treg repertoire: future studies 

 

We have demonstrated that DO affects selection of CD4 T cells into the Treg 

lineage, and that Tregs selected in the absence of DO display phenotypic and 

functional changes indicative of greater activation. We also show that mice 

deficient in DO exhibit elevated levels of anti-dsDNA antibodies, in agreement 

with an earlier report288, as well as display alterations in GC subsets indicative of 

an aberrant GC reaction. In an experimental model of Sjogren’s disease, these 

effects persist, suggesting that DO expression is necessary to subvert autoimmunity 

through modulation of Treg function. 

While we have shown that DO-/- Tregs do not proliferate more or convert 

from conventional CD4 T cells at a greater rate than do WT Tregs, the evidence we 
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provide to show that increased Tregs is the DO-/- mouse is due to their increased 

selection in the thymus is not definitive. Due to peripheral expression of DO, 

increased Treg frequencies could result from clonotypic expansion in the periphery, 

and increased frequencies observed in the thymus could be due to thymic 

recirculation. Examination of the effect of DO in the Rag2pGFP transgenic mouse 

model345, which can distinguish between newly selected and recirculating Tregs 

based on Rag2 expression, may clarify whether DO-/- Tregs are thymically-derived. 

Similarly, generation of a conditional DO knockout model, as proposed above, 

would be useful in resolving this issue. Using a conditional knockout model, the 

effect of DO expression in the mTEC compartment could be examined, for 

example, by crossing DOfl/fl and K14-Cre mice, which would selectively ablate DO 

in K14 promoter-expressing thymic epithelial cells396. Still, results of our BM 

chimera experiments in particular lend support to the idea of increased Treg 

selection being initiated in the thymus of DO-/- mice, as WTàDO BM chimeras 

showed similar increases in peripheral Tregs, where the effect of DO modulation 

on peripheral antigen presentation by hematopoietic-derived APCs does not play a 

role.  

Results of TCR sequencing experiments suggest that DO serves to shift 

Treg selection and diversifies the clonotypic repertoire of Tregs. Our data do not 

demonstrate how this occurs, as Treg selection may be altered in DO-/- mice due to 

increased deletion of clonotypes selected in WT mice or may simply narrow the 

window of Treg specificity (Figure 5.1). Sequencing of TCR transgenic mice with 

different Vb reactivities, as well as single-cell TCR sequencing, may lend further 
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insight into the manner in which Treg selection is shifted by DO expression. 

Additional experiments that may help determine the mechanism behind DO’s 

effects on thymic selection include in vitro co-culture of pre-selection thymocytes 

with DO-sufficient or -deficient APCs, in which clonal deletion can be measured337. 

Fetal thymic organ cultures or the more recently developed technique of 

reaggregate thymus organ culture may also be useful in determining the mechanism 

of altered T cell selection in DO-/- mice397. Use of retrogenic TCR technology could 

allow for examination of the effect of DO on differentiation of certain clonotypes 

into the conventional T cell vs. Treg lineage upon transfer to DO-/- or WT mice. 

Another line of experimentation to help clarify DO action in thymic selection is 

identification of peptide ligands for TCRs that are differentially selected, which can 

Figure 5.1. Possible models for altered Treg selection due to DO. 
(1) Lack of DO may shift the degree of self-reactivity due to increased 
avidity, resulting in greater deletion and lesser diversity of the Treg 
population. (2) Alternatively, DO may narrow the window of 
specificity for Tregs due to presentation of fewer peptides.  
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be accomplished by screening of cells engineered to express these TCRs against an 

array of potential ligands, and then further examined by characterization of TCR-

MHC-peptide interactions using crystallographic or binding studies. Results could 

also lend insight into the mechanism of Treg selection, which is thought to integrate 

peptide affinity and avidity but which is not clearly understood171. I.v. injection of 

WT mice using different doses of the peptides identified398, followed by 

examination of the effect on Treg frequency, might provide further support to the 

mechanism of action of DO in modulating peptide density and thereby in affecting 

T cell selection. 

We have observed that despite the increased frequency of Tregs in DO-/- 

mice, fewer Tfr reside in the germinal center. We attribute the increased anti-

dsDNA antibodies observed in older mice and in a model of autoimmunity to a 

deficiency in Tfr differentiation, but we do not causally demonstrate this effect. 

Experiments to prove this link may include depletion of Tregs in both DO-/- and 

WT mice using the Foxp3DTR model, followed by reconstitution with DO-/- or WT 

Tregs isolated from non-DTR-expressing mice and induction of experimental 

Sjogren’s syndrome. The caveat with using DT to deplete Tregs is that it must be 

administered every 7 days to sustain Treg ablation, which may interfere with or 

exacerbate the normal progression of autoimmune disease in this model and render 

interpretation of results difficult. An alternative would be simply to inject isolated 

DO-/- or WT Tregs into DO-/- or WT mice, perhaps using a weekly or biweekly 

regimen, during induction of ESS. If Tfr differentiation is impaired and is 

responsible for increased autoantibody levels, provision of DO-/- Tregs to either 
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DO-/- or WT mice may have less of an effect on levels of anti-dsDNA antibodies 

than would provision of WT Tregs. A potential challenge using such a strategy may 

arise due to the fact that the Treg niche is already established, and therefore infused 

Tregs may not adequately proliferate when transferred. As discussed in Chapter III, 

we also noted increased GC B cells in these mice, and previous work suggests that 

expression of DO in thymic epithelium is sufficient to induce ANAs288. Results of 

those experiments suggest that thymically-derived Tregs are not responsible for the 

phenotype observed, while according to our hypothesis lack of thymic DO 

expression would be necessary for increased Treg frequencies and aberrant Tfr 

function. While many reports have demonstrated a role for Tfr in regulation of the 

expansion of GC cell subtypes351-353, ablation of Bcl6 in Tregs has also been shown 

to have no effect on Tfh or GC B cells but rather to alter the antibody response399. 

Further studies are therefore required to determine the basis for increased levels of 

autoantibodies in these mice. 

 

DO impacts the immune response to influenza A: future studies  

 

We have demonstrated that DO-/- mice display a marked delay in recovery from 

influenza A infection compared to WT mice. We examined many aspects of the 

immune response and observed multiple deficiencies in immunity to influenza A in 

the DO-/- mouse. Presentation of several epitopes by lung and dLN APCs was 

reduced, as were the T cell responses associated with presentation of those epitopes. 

A sole epitope derived from the influenza virus nucleoprotein was shown to be 
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presented to a greater degree by DO-/- APCs, presumably due to its resistance to 

DM. T cell responses to this epitope, while increased in frequency, were reduced 

in number. We reasoned, based on these data as well as due to the fact that innate 

immunity also appeared suppressed, that increased Treg numbers and possibly 

increased suppressive capacity of Tregs in the DO-/- mouse accounted for the 

phenotype observed (Figure 5.2). While we show that lung tissue Tregs are 

increased during infection in DO-/- mice compared to WT, our efforts to deplete 

Tregs in order to test their function were complicated by nonspecific effects of DT, 

and so we are unable to conclude that DO-/- Tregs are responsible for the observed 

phenotype. 
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Figure 5.2. Working model for effect of DO in influenza A infection. In 
the absence of DO, increased suppression by Tregs reduces APC and innate 
immune cell function, leading to dampened cytokine and T cell responses. 
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In order to determine whether Tregs are indeed overactive in the DO-/- 

mouse during influenza infection, a system in which different cellular components 

affected by DO expression could be modulated may be useful in determining the 

mechanism underlying the deficient response to influenza A in the DO-/- mouse. 

Reconstitution of Rag-deficient or TCR-deficient mice with different combinations 

of DO-/- or WT cell types, for example, may allow for assessment of the differential 

contributions of Tregs, conventional CD4 T cells, and APCs in the observed 

phenotype. Here again, generation of a conditional DO knockout mouse may also 

prove useful in understanding these effects. The role of Tregs in this model could 

become apparent with Treg transfer prior to infection, to determine whether 

increased Treg frequencies show a similar suppressive effect. If increased 

suppression is also modulated by increased suppressive capacity of DO-/- Tregs, 

transfer of DO-/- vs. WT Tregs may show a detectable difference in suppression of 

the immune response, although again it is unclear whether sufficient proliferation 

of transferred Tregs would occur when the Treg niche is already established. 

We also observed alterations in influenza epitope presentation in the DO-/- 

mouse, which may be at least in part due to Treg function. The possibility also 

exists that the epitope skewing observed is wholly responsible for the defective 

immune response in DO-/- mice. We transferred NP311 Tg T cells to test their 

capacity to proliferate in DO-/- and WT mice; if additional mouse models expressing 

influenza-specific TCRs on a C57BL/6 background were available, transfer of T 

cells from such mice would be useful to clarify whether the effect observed for 

NP311 Tg T cells is distinct. In our hands, transfer of polyclonal T cells does not 
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allow for the sensitivity required to assess the effect of DO, as the frequency of 

transferred cells is quite low, but here again a transfer system using TCR-deficient 

mice may be useful. Yet another possibility that could account for the effect 

observed on epitope skewing, which could also be the basis for the overall deficient 

response to influenza A in the DO-/- mouse, is differential expression of DO in lung 

epithelium, which to our knowledge has not been assessed in naïve or infected mice. 

MHC-II has been demonstrated in other contexts to be expressed during 

inflammation by endothelial and epithelial cells400,401, and so DO and DM could be 

similarly upregulated. Use of lung epithelial cells isolated at different time points 

during infection in antigen presentation assays may therefore help determine 

whether differential presentation by non-professional APCs contributes to the 

altered immune response to influenza A in DO-/- mice. 

Mice lacking DO were recently shown to produce higher titers of 

neutralizing antibodies during retroviral infection259, indicating DO impacts the 

process of pathogen-specific antibody affinity maturation. While we did not 

observe effects on influenza-specific antibody isotypes, we did not examine 

functional aspects of antibodies produced in DO-/- vs. WT mice during influenza 

infection. Further experimentation may show that the affinity or neutralizing 

capacity of antibodies generated during influenza A infection is affected by DO 

expression, and that such alterations affect the response to influenza A in DO-/- 

mice. 
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Perspective and implications of DO function in the biology of disease 

 

The results presented in this thesis provide further insight into the role of DO in 

antigen presentation at the cellular level, in tolerance to self, and in immunity to 

pathogens. Many questions remain, and many additional consequences of DO 

expression are possible. We have predominantly studied Tregs isolated from 

secondary lymphoid tissues, but what role might DO play in the function of tissue-

specific Tregs, such as in the gut or the skin? Does DO function in the context of 

tumor immunity where the diversity of the MHC-II peptidome as well as Treg 

specificity and suppressive capacity are likely important? DO expression has been 

shown to prevent type 1 diabetes in the NOD mouse model253, but does it exert any 

function in additional models of autoimmune disease in human or mouse? In this 

work, DO’s effects in the context of the MHC-II molecules HLA-DR and I-Ab, both 

of which are sensitive to the effects of DM catalysis24,402, were examined. Certain 

disease-associated MHC-II alleles, such as DQ2 and DQ8, have been shown to be 

more resistant to DM action, with reduced effects of DM posited to impact 

susceptibility to autoimmunity30,271,403. Does DO play an appreciable role in 

selection of epitopes specific for alleles that are less dependent on DM? In the 

context of immunity to pathogens, we show here that DO plays a role early in the 

immune response to influenza A, and DO has been implicated previously in 

generation of neutralizing antibodies during retroviral infection259. In other models 

of viral or bacterial infection, particularly in those in which CD4 T cell responses 

or Treg function have been shown to be important for pathogen clearance, does DO 
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exert a similar effect? Studies to examine these questions may provide the basis for 

development of novel therapeutics or vaccine design to more effectively treat 

autoimmune or infectious disease. 
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APPENDIX I 

MHC-I peptide binding activity assessed by exchange after cleavage of peptide  

covalently linked to b2-microglobulin 
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Abstract 

A common approach to measuring binding constants involves combining receptor 

and ligand and measuring the distribution of bound and free states after 

equilibration. For class I major histocompatibility (MHC-I) proteins, which bind 

short peptides for presentation to T cells, this approach is precluded by instability 

of peptide-free protein. Here we develop a method wherein a weakly-binding 

peptide covalently attached to the N-terminus of the MHC-I b2m subunit is 

released from the peptide binding site after proteolytic cleavage of the linker. The 

resultant protein is able to bind added peptide. A direct binding assay and method 

for estimation of peptide binding constant (Kd) are described, in which fluorescence 

polarization is used to follow peptide binding. A competition binding assay and 

method for estimation of inhibitor binding constant (Ki) using the same principle 

also are also described. The method uses a cubic equation to relate observed binding 

to probe concentration, probe Kd, inhibitor concentration, and inhibitor Ki under 

general reaction conditions without assumptions relating to relative binding 

affinities or concentrations. We also delineate advantages of this approach 

compared to the Cheng-Prusoff and Munson-Rodbard approaches for estimation of 

Ki using competition binding data. 
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Introduction 

Presentation of antigenic peptides to T cells is both requisite for initiation of an 

adaptive immune response and necessary for tolerance to self. The affinity and 

stability of antigenic peptides binding to MHC molecules are intrinsic aspects of T 

cell activation and have been used as predictors of immunogenicity and 

immunodominance404,405. Defining the molecular interactions between MHC 

molecules and peptide ligands thus has implications in effective vaccine design, in 

diagnostic capability, and in understanding basic immunological processes. In the 

last several decades, considerable progress has been made in characterizing these 

interactions, and peptide affinity for MHC has been shown to be a critical 

determinant of the T cell response in infection, autoimmunity, and tumor models406-

410. Despite development of many assays to quantify or characterize MHC-peptide 

affinities, these methodologies are often encumbered by laborious and time-

consuming experimental steps, such that substantial effort has been made to 

establish more efficient and high-throughput epitope screening methods. 

Assays to evaluate the affinities of putative and known MHC-I epitopes 

have been developed over the last 30 years using both cell-based and cell-free 

platforms. Perhaps the earliest work on quantifying peptide affinity employed cell-

free biochemical methods to measure binding of iodinated peptides to MHC-I411-

413. Using this technique, MHC-I molecules are purified from cell lysates and 

solubilized in detergent, and affinity is measured by quantifying binding of 

radiolabeled peptides by gel filtration of MHC-I complexes vs. free peptide. Later 
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methods employed fluorescence labeling rather than iodination, thereby 

eliminating the radioactive waste and hazard, but this assay still necessitated 

purification of each peptide-MHC-I complex by chromatographic or 

electrophoretic separation and was therefore labor-intensive and low-

throughput414,415. A high-throughput scintillation proximity assay based on 

radioactive peptide exchange using purified native MHC protein has been 

reported416. Cell-based methods have been used to evaluate MHC-I-peptide 

interactions, including a cell-surface stabilization assay, in which surface MHC-I 

of TAP-deficient T2 cells is stabilized by the addition of iodinated or fluorescently-

labeled peptides417,418, as well as cell-surface binding assays, in which endogenous 

peptides are exchanged in situ419,420 or partially removed by acid treatment of 

surface MHC-I-bound peptides followed by addition of fluorescent peptides421,422. 

Surface plasmon resonance has also been used to measure peptide binding in 

indirect assays monitoring b2-microglobulin dissociation423, and in direct assays 

following MHC-I binding to covalently-coupled peptides424. The peptide 

dependence of in vitro MHC-I folding reactions can serve as the basis for MHC-I-

peptide binding assays, with detection using conformation-specific antibodies or 

pairs of antibodies specific for MHC-I heavy-chain and b2-microglobulin425,426.  

Due to the inherent instability of peptide-free “empty” MHC-I molecules, 

assays that measure peptide-binding affinity generally include some type of peptide 

exchange as a necessary step in the reaction. Full-length MHC-I proteins purified 

in detergent from mammalian cells are largely occupied with endogenous peptides, 

and while peptide exchange can be measured for these preparations, the efficiency 
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is low. Peptides can be removed from MHC-I preparations by partial denaturation, 

and assays based on this approach have been reported427. As an alternate approach, 

MHC-I subunits can be folded from heavy chain and b2-microglobulin subunits 

expressed in E. coli inclusion bodies428,429. Folding in vitro is highly peptide-

dependent, and this provides a means to prepare MHC-I complexes with defined 

peptides. MHC-I proteins preloaded with weakly-binding, easily exchangeable 

peptides potentially could be used as starting material for peptide-exchange assays. 

This requires identification of peptides with MHC-I–peptide-binding affinity 

sufficiently high to allow for in vitro folding and purification but sufficiently low 

to allow for efficient exchange with test peptides. Dipeptides have been identified 

for some MHC-I proteins that could serve this purpose430, but a “conditional ligand” 

strategy has proven more useful, wherein MHC-I complexes are folded with full-

length peptides carrying photocleavable431 or chemically-labile432 amino acid 

residues that upon cleavage produce easily-exchangeable peptide fragments. 

Similar assays have been developed for evaluating affinities of MHC-II 

epitopes329,414,433-436, facilitated in many cases by the increased stability of peptide-

free MHC-II relative to MHC-I326, and by the availability of recombinant MHC-II 

proteins expressed in E. coli or insect cells with empty peptide-binding sites or 

carrying only weakly-associating peptides326,437-439.	

Here, we describe a novel technique to measure peptide affinities, which 

incorporates a different mode of peptide exchange based on a covalent peptide 

approach. In that approach, a tight-binding peptide is tethered to the N-terminus of 

the b2-microglobulin subunit440, where it is positioned near the peptide-binding 
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site, similar to covalent peptide approaches conventionally used for MHC-II 

molecules441. This allows for production of essentially homogenous MHC-I peptide 

complexes in mammalian cells442. Here, epitope-linked b2-microglobulin (ELBM) 

is expressed in mammalian cells with a weakly binding peptide tethered to the b2m 

subunit via a linker that contains a thrombin cleavage site, so that upon addition of 

protease, the peptide is released. This design circumvents issues that may be 

encountered with MHC molecules that are difficult to fold in vitro and avoids 

complications with handling MHC-I proteins folded with suboptimal peptides. 

Following recent studies443,444, we monitored MHC-I-peptide binding using 

fluorescence polarization, a technique wherein plane-polarized light is employed to 

distinguish between bound and free ligands without the need for physical 

separation329,443. The degree of polarization is measured by excitation of a 

fluorophore label and calculated by measurement of fluorescence intensities both 

parallel and perpendicular to the plane of polarized light. In an MHC-peptide 

binding assay, the labeled peptide will exhibit high fluorescence polarization when 

bound to MHC-I due to decreased molecular mobility but will tumble freely in 

solution and display low polarization when unbound. Titration of unlabeled 

competitor peptides allows for computation of binding affinities, and this assay is 

also highly amenable to high-throughput screening. Using this approach, we 

developed direct binding and competition assays to evaluate binding affinities for 

peptides binding to the common human MHC-I allele HLA-A*02:01 (HLA-A2). 

The direct binding assay can be used to estimate binding affinities for labeled 

peptides binding to MHC-I. The competition binding assay, using unlabeled test 
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peptides and a single labeled probe peptide, is suitable for high-throughput analyses 

and can be used to give half-maximal inhibition (IC50) values that report relative 

binding affinity of test peptides and estimates of inhibitor peptide-binding constant 

(Ki).  

Traditionally, inhibition binding assays are interpreted in terms of the IC50 value, 

i.e. the concentration of unlabeled test peptide that causes 50% inhibition of binding 

of a probe peptide. Because IC50 values vary with experimental conditions, 

measurements of Ki, the equilibrium binding constant of the inhibitor peptide, are 

more useful in quantification of inhibitor peptide-binding affinity. Under some 

experimental conditions, IC50 and Ki values are similar. Requirements for this are 

that the probe peptide concentration is low relative to that of the test peptide, the 

probe peptide has a low Kd relative to the concentration used, and MHC 

concentration is low relative to peptide concentration. For experimental conditions 

in which these parameters deviate from concentration or binding constant limits, 

corrections have been proposed to calculate Ki from IC50 values. The most 

commonly used of these is the Cheng-Prusoff correction, which corrects for probe 

peptide concentration and binding affinity effects. However, the MHC 

concentration must remain low relative to the binding constants for this correction 

to be accurate. Munson and Rodbard proposed an exact correction for the Cheng-

Prusoff approach when y0, the ratio of bound to free probe peptide in the absence 

of inhibitor, is available. However, in practice this approach can lead to large errors 

if the relevant parameters are not precisely known. To circumvent these issues, we 

developed an analysis relating Ki to IC50 without assumptions about concentrations 
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or binding affinities, using a cubic equation. The cubic equation describes the 

amount of probe peptide bound in terms of concentrations and binding constants 

for both probe peptide and inhibitor peptide, and this approach is suitable for curve 

fitting inhibition binding data. 

 

Results 

Class I MHC produced as epitope-linked b2-microglobulin constructs  

Epitope-linked b2m (ELBM) was prepared by co-expressing in mammalian cells a 

soluble HLA-A2 heavy chain construct and a b2-microglobulin construct carrying 

an N-terminal “stuffer” epitope peptide, a thrombin cleavage site, complementary 

leucine zippers, and purification tags (Figure A1.1). Both constructs have signal 

HBSPHLA-A2 heavy chainSS bZIP
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…MLQEKPFQL GSGGSGGSG LVPR|GS IQRTPK…

SS P T β2m aZIPL
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sequences, and so the resultant heterodimeric protein is secreted to the culture 

medium where it can be collected by affinity chromatography. The protein is 

designed such that with addition of thrombin, the linker peptide can be 

proteolytically cleaved, and a peptide of interest can be added to bind to the MHC-

I complex (Figure A1.1). The ELBM protein was then used to develop a 

fluorescence polarization assay to measure direct binding and optimize a 

competitive inhibition strategy for affinity measurements for a panel of peptides. 

 

Fluorescence polarization discriminates MHC-bound and free forms of an 

Alexa488-labeled peptide 

To evaluate the dynamic range of this assay and to determine parameters needed to 

convert polarization values to fractional binding, we first measured mP values for 

free and fully MHC-bound peptide. FP values for free labeled peptide (25 nM 

Alexa488-RT[cys]) were 21±4.5 mP (mean±standard deviation, n=8), while 

recombinant HLA-A2 refolded with Alexa488-RT(cys) displayed FP values of 

134±4.2 mP, independent of concentration in the range ~30 nM to 2 uM (Figure 

A1.2A). We evaluated practical limits on labeled peptide concentrations resulting 

from non-specific binding of peptide to the assay plate at low concentrations as well 

Figure A1.1. Peptide epitope-linked b2-microglobulin HLA-A2 constructs.  (A) Schematic of 
peptide exchange using epitope-linked b2-microglobulin. (B) Schematic of constructs used to 
express ELBM (SS: secretion signal sequence; bZIP: basic leucine zipper; BSP: BSP85 peptide; 
H: His6 tag; P: peptide: T: thrombin cleavage site; aZIP: acidic leucine zipper). Linker sequences 
shown in green. Vertical line in thrombin sequence shows expected cleavage site. The peptide 
epitope sequence shown is from the ML9 peptide, while in some experiments other sequences were 
used (see below). Not drawn to scale. 
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as the sensitivity of the instrument used to measure FP. Based on titrations of 

peptide in glycerol to simulate peptide binding (Figure A1.3), ~25 nM peptide  

Figure A1.2. Optimization of peptide and assay conditions. (A) Fluorescence polarization of free 
peptide (25 nM Alexa488-RT[cys]) and bound peptide (HLA-A2 refolded with Alexa488-RT[cys]) 
were measured at 21±4.5 mP (free) and 134±4.2 mP (bound). Bound mP values were independent 
of MHC concentration. (B) Addition of 0.01 unit/µl thrombin to 300 nM ELBM-ML9 and 25 nM 
Alexa488-RT(cys) demonstrated an increase in FP, suggesting cleavage of the linker, release of the 
ML9 peptide, and binding of the Alexa488-RT(cys) peptide, while ELBM-FL9 displayed little 
polarization under the same conditions, with or without thrombin. (C) SDS-PAGE analysis of 
ELBM-ML9 before and after thrombin cleavage using a 12% Tris-Tricine gel demonstrates 
cleavage of the linker with the addition of thrombin. HC: heavy chain; pep-b2m: peptide-b2m; T: 
thrombin. 

appears to be the lower limit for this assay, as FP values increased at lower peptide 

concentrations. Although mP values are reliably consistent when up to 400 nM 

peptide is used (Figure A1.3), higher peptide concentrations are not ideal for 

quantitative work. 25 nM probe peptide was therefore chosen as the concentration 

to be used for direct binding and competition assays. 
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Optimization of peptide binding assay  

We initially tested MHC-ELBM constructed with two different epitopes (FL9 or 

ML9 [Table A1.1], Figure A1.1), using different concentrations of MHC to 

determine the amount of MHC-ELBM necessary to bind 25 nM labeled Alexa488-

RT(cys) peptide. Results indicated that ML9 was cleaved upon addition of 

thrombin, with increased binding of Alexa488-RT(cys) (Figure A1.2B, shown at 

300 nM MHC). ELBM constructed with the FL9 peptide, however, demonstrated 

little to no fluorescence polarization even with addition of thrombin, indicating that 

the FL9 peptide either had not been cleaved or was inefficiently exchanged for the 

probe peptide (Figure A1.2B). All subsequent experiments were therefore 

performed with ELBM-ML9. SDS-PAGE of ELBM-ML9 further confirmed that 

the thrombin concentration used was effective in cleaving the ML9 peptide (Figure 

A1.2C). Additional parameters tested and optimized included buffer composition, 

concentration of thrombin, and reaction volume. To examine the kinetics of probe 

Supplemental Figure 1.  Concentration and viscosity 
effects on Alexa488-RT(cys) fluorescence polarization 
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Figure A1.3. Concentration and viscosity effects on Alexa488-RT(cys) fluorescence 
polarization. (A) Higher glycerol (v/v) concentration increases FP of Alexa488-RT(cys) peptide, 
independently of peptide concentration. (B) All data points shown in (A) for a given glycerol 
concentration display similar FP values irrespective of peptide concentration. 
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peptide binding to ELBM-ML9 as well as to determine the optimal duration of the 

experiment, we performed an analysis using different concentrations of MHC with 

25 nM Alexa488-RT(cys) and measured FP values over time (Figure A1.4A). 

Results indicated that, for all concentrations of MHC tested, MHC binding to probe 

peptide increased rapidly for ~200 min with slower changes continuing for up to 

1000 min. In subsequent work reactions were analyzed after 16hr incubation. The 

rate of binding was shown to saturate with increasing MHC concentration (Figure 

A1.4B-C), indicating that the limiting step of this reaction - most likely cleavage or 

release of the cleaved fragment - occurs prior to peptide binding. 

 

 

Figure A1.4. Kinetics of MHC-peptide formation. (A) Kinetics of fluorescence polarization using 
different concentrations of MHC show increased rates of probe peptide binding with greater MHC 
concentration. (B) Binding rate, as shown by initial rate of MHCpep formation, increases as MHC 
concentration increases. (C) Transformation of initial rate of MHCpep formation demonstrates 
saturation of rate of binding with increasing MHC concentration. 

Figure 3. Kinetics of MHC-peptide formation  
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MHC and peptide titration 

To estimate a value for the Kd of the probe peptide, we assessed equilibrium binding 

by measuring FP with varying concentrations of either MHC-I or probe peptide. 

The amount of MHCpeptide complex formed was calculated using the equation: 

[𝑀𝐻𝐶𝑝𝑒𝑝] = 	 678679:;;
67<=>?@8679:;;

×	𝑃𝑒𝑝CDC     Eq. 1 

where mP is the experimental FP value, mPfree and mPbound are values for free and 

MHC-bound probe peptide, determined as described above, and Peptot is the total 

concentration of probe peptide, i.e. the amount added at the start of the reaction 

(This equation assumes additivity of fluorescence polarization, which strictly 

speaking is limited to fluorescence anisotropy, but for mPfree and mPbound values 

observed here the simplification leads to fractional binding errors of <1%). With 

[peptide] fixed at 25 nM and [MHC] increased as in Figure A1.4A above, a 

sigmoidal binding curve with apparent saturation at [MHCpep] ~25 nM was 

observed (Figure A1.5A). Non-linear least-squares fitting to either a simple two-

component binding equation:  

[𝑀𝐻𝐶𝑝𝑒𝑝] = 	 EFGHIH∗KLMHIH
NOPKLMHIH

        Eq. 2 

where MHCtot is the variable [MHC] and Kd is the equilibrium binding constant, or 

to a quadratic equation that accounted for ligand-depletion effects (see Addendum 

A):  
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[𝑀𝐻𝐶𝑝𝑒𝑝] = (KLMHIHPEFGHIHPNO)±R(KLMHIHPEFGHIHPNO)S8TKLMHIHEFGHIH
0

    Eq. 3 

revealed an apparent inhibition constant Kd,app = 282±31 nM (Figure A1.5A). In a 

separate experiment with [MHC] fixed at 1000 nM and [peptide] increased, a 

sigmoidal binding curve again was observed (Figure A1.5B). The curve appeared 

to reach maximum [MHCpep] in the vicinity of 100 nM, although there was 

substantial experimental uncertainty at high [peptide] due to low bound fraction for 

the probe peptide and small denominator in Eq. 1. Fitting this curve to simple or 

quadratic competition binding equations (Eq. 2 and 3) revealed Kd,app = 37±38 nM. 

The 5- to 10-fold discrepancy between half-maximal concentrations of peptide and 

MHC in the two titrations, and between corresponding saturation levels, is 

unexpected for a simple binding reaction, but could occur if only a fraction of the 

MHC participates in the reaction. This could be due to incomplete thrombin 

cleavage of the ELBM construct, incomplete peptide release, or conversion to an 

inactive form as previously observed for MHC-II445.   
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Figure A1.5. Direct binding assay for estimation of Kd. (A) With varying [MHC] and constant 
[Alexa488-RT(cys)], a curve is fit using a quadratic equation, or using an equation for one-site 
specific binding (simple fit). The Kd,app is calculated to be 283±31 nM. (B) With varying [Alexa488-
RT(cys)] and constant [MHC], curve fits are generated as above. The Kd,app is calculated to be 37±18 
nM. (C) Simultaneous fitting of MHC and peptide titrations using a quadratic equation gave a Kd 
value of 16±4 nM for the Alexa488-RT(cys) probe peptide and an active MHC fraction of 8.2±0.8%. 
Curves in (A) and (B) were fit using Eq. 2 and 3; curves in (C) were fit using Eq. 4. 

 

Estimation of Kd and MHC active fraction  

To analytically evaluate the fraction of MHC protein that participates in the binding 

reaction, we simultaneously fit the MHC and peptide titrations, using a quadratic 

binding equation that includes a term fract that describes the active MHC fraction 

(Figure A1.5C). To avoid transformations of the experimental data that result in 

non-linear amplification of experimental uncertainty, we recast the quadratic 

binding equation in terms of the experimentally observable fluorescence 

polarization mPobs, as well as mPfree, mPbound and the total reactant concentrations 

MHCtot and Peptot (Addendum A): 

𝑚𝑃DVW =
XYEZI[\O8YE]^__`(abcdHKLMHIHPEFGHIHPNO)±R(8abcdHKLMHIH8EFGHIH8NO)S8TabcdHKLMHIHEFGHIH

0
+ 𝑚𝑃abFF     Eq. 4 
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At fixed [peptide], mPobs increases as MHCtot is increased, reaching a saturating 

value at mPbound. (Figure A1.5C, blue symbols). At fixed [MHC], mPobs decreases 

as Peptot is increased, given that the fractional amount of peptide decreases (Figure 

A1.5C, red symbols). Simultaneous fitting of both datasets revealed a Kd of ~16 

nM with an active fraction of ~8%.   

 

Figure A1.6. Differential scanning fluorimetry of MVA peptide-MHC complexes. (A) 
Fluorescence intensity of SYPRO Orange bound to HLA-A2-peptide complexes is shown over a 
range of temperatures as the complexes unfold. (B) Transformation of the fluorescence intensity 
data shown in (A) using the first derivative illustrates the Tm of each MHC-I-peptide complex at the 
apex of the curve.   

 

Competition binding assay for determination of IC50 

Competition binding assays, in which binding of a fixed concentration of a probe 

binder is assessed as the concentration of an unlabeled competitor is varied, are 

useful in routine binding analysis given that they allow for testing of many 

unlabeled test peptides using a single preparation of labeled probe peptide. This is 

particularly true for FP-based MHC-peptide binding analysis, as introduction of a 

fluorescent probe is likely to alter MHC-peptide binding affinity due to extensive 

Supplemental Figure 2. Differential scanning 
fluorimetry of MVA peptide-MHC complexes 
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and somewhat unpredictable MHC interactions all along the length of a bound 

peptide. To evaluate the utility of the ELBM FP assay in competitive binding 

assays, we selected a set of competitor peptides derived from vaccinia virus for 

which IC50 values and/or half-life measurements had been previously reported446-

449 (Table A1.2). As the full set of peptides had not been previously compared in 

the same assay, we evaluated the thermal stability of HLA-A2 complexes of the set 

of test peptides (Figure A1.6, Table A1.2) using a differential scanning fluorimetry 

assay 450. The assay was performed with competitor peptides titrated in 2-fold 

dilutions starting from 2 µM (Figure A1.7). IC50 values were determined by fitting 

using nonlinear regression analysis with the equation:  

𝑚𝑃DVW	 = 	
(YEfcg8YEfh\)

.PijIfkHIH
ljmn

o
+ 𝑚𝑃Y&p	  Eq. 5 

where mPmin is measured in the absence of MHC (i.e. mPfree), mPmax is measured in 

a control binding reaction with MHC and probe peptide but in the absence of 

competitor peptide, Comptot is the variable concentration of the (unlabeled) 

competitor peptide, and IC50 is Comptot at half-maximal competition. As expected, 

increasing concentration of each of the vaccinia test peptides decreased the binding 

of labeled probe peptide (Figure A1.7). Best-fit IC50 values for these peptides 

ranged from ~230 nM to ~1250 nM. 
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Figure A1.7. Measurement of IC50 for a set of vaccinia peptides. An inhibition assay was 
performed for determination of IC50 using 500 nM MHC and 25 nM Alexa488-RT(cys), with 2-fold 
dilutions (beginning at 2 µM) of the vaccinia competitor peptides A2_P1061, MVA013, MVA165, 
VACWR082_Ag, and VACWRSPI2_Ag. The GGV peptide was similarly diluted and used as a 
negative control. Curves were fit using Eq. 5. 

 

 

Concentration dependence of IC50 

IC50 measurements are suitable for relative assessments of binding affinity, but 

often the absolute binding affinity of the inhibitor peptide, Ki, is desired. Under 

certain conditions, the IC50 value obtained in a competition binding assay 

approximates the Ki, in particular when the concentration of peptide is below its Kd 

and the concentration of MHC is low relative to the concentration of test and probe 

peptides. For FP assays with MHC proteins, these conditions are difficult to achieve 

Figure 5. Measurement of IC50 for a set of vaccinia 
peptides 
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in practice. In our assay, the concentration of labeled peptide was necessarily >10 

nM to obtain reliable FP measurements, but this is near the Kd, and the MHC 

concentration needed to be several fold greater in order to bring the bound fraction 

into a region where competition could be observed. We evaluated the concentration 

dependence of IC50 for three of the test peptides that spanned the range of observed 

IC50 values. Experiments at different MHC concentrations yielded different IC50 

values, although the test peptide rank order and relative IC50 values were similar 

under the different conditions (Figure A1.8A-D, Table A1.2).   

 

Estimation of Ki using Cheng-Prusoff and Munson-Robard approaches 

Several approaches have been suggested in the literature to correct for these 

concentration effects and convert IC50 values to Ki451-456. In the Cheng-Prusoff 

approach, IC50 values can be converted to Ki using the known concentration of the 

labeled test peptide and its binding constant: 

𝐾&,sDbb =
tMmn

.Pu_kHIHvO

          Eq. 6 

Under our experimental conditions, the probe peptide concentration was similar to 

its binding affinity, with Peptot/Kd ~1.5, so the correction factor was substantial 

(Table A1.3). However, this equation does not consider the effect of high MHC 

concentration on depleting peptide, so that the free and total peptide concentrations 

are substantially different. Thus, even after application of the Cheng-Prusoff 

correction, we observed Ki,corr to vary with [MHC] (Table A1.3). 
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In the Munson-Rodbard approach, ligand depletion is considered explicitly using a 

term (y0) corresponding to the ratio of bound and free test peptide in the absence of 

inhibitor: 

𝐾&,sDbb = 	
tMmn

wxu_kHIH∗(ynxS)
XSvO[ynxw]`xyn

+ zn∗NO
[znP0]

                 Eq. 7 

Although in principle this correction is exact, in practice y0 can have substantial 

experimental uncertainty, leading to large deviations of the observed Ki,corr from 

expected values. Under our assay conditions, at low [MHC] the y0 factor was 1.9, 

with a reasonable 95% confidence interval of 1.4-2.8 based on the experimental 

uncertainly in mPmin and mPbound, but at high [MHC], the y0 factor was 8.8, with a 

very large 95% confidence interval of 4.7-36. Thus, even after Munson-Rodbard 

correction, we observed substantial Ki,corr divergence (Table A1.3). 

 

Estimation of Ki using a cubic equation  

In order to determine more directly how MHC concentration (MHCtot), probe 

peptide concentration (Peptot), and probe peptide binding affinity (Kd) would affect 

IC50 curves obtained, we modeled IC50 curves as a function of concentration of 

competitor peptide. Because of the effects of ligand depletion on both probe and 

test peptides, this requires a cubic equation457,458. We derived an exact equation for 

the free MHC concentration in terms of the other experimental parameters (see 

Addendum B): 
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[𝑀𝐻𝐶] = 	 R(1 − 𝑀𝐻𝐶CDC + 𝐾| + 𝐾& + 𝑃𝑒𝑝CDC + 𝐶𝑜𝑚𝑝CDC − 𝑀𝐻𝐶CDC𝐾| − 𝑀𝐻𝐶CDC𝐾& + 𝐾|𝐾& + 𝐾&𝑃𝑒𝑝CDC + 𝐾|𝐶𝑜𝑚𝑝CDC − 𝑀𝐻𝐶CDC𝐾|𝐾&)
~

  

Eq. 8 

 

and used this to simulate competition binding curves under different conditions, 

using the test conservation equations [MHCpep]=MHCtot-[MHC] and  

 

Figure A1.8. Dependence of IC50 on MHC concentration. (A-D) An inhibition assay to determine 
IC50 values was performed with different MHC concentrations and 25 nM Alexa488-RT(cys), with 
2-fold dilutions of competitor peptides beginning at 5 µM (1 µM MHC), 2.5 µM (500 nM MHC), 
and 1.25 µM (250 nM MHC). As MHC concentration doubles from (A) 250 nM to (B) 500 nM to 
(C) 1 µM, IC50 values approximately double (D) for the vaccinia peptides tested (shown in Table 
A1.2.) Curves were fit using Eq. 5. (E-F) Simulated binding competition curves, calculated using 
Eq. 8, for 25 nM test peptide with Kd=20 nM and other parameters as shown. 
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Peptot=[Pepfree]+[MHCpep] to relate the free MHC concentration to the percentage 

of test peptide bound observed experimentally. Calculated completion curves shift 

as each the experimental variables (MHCtot, Ki, Kd) are changed (Figure A1.8E-F), 

but as we observed experimentally, differences between the IC50 curves are 

distinguishable regardless of the changes in these parameters.  

 

We next simultaneously fit a family of experimental IC50 curves for a single test 

peptide obtained under different [MHC], with the idea that this might provide a 

reliable consensus Ki value, similarly to how simultaneous fits of MHC and peptide 

titrations provided a robust Kd determination as described above. We encountered 

difficulty implementing a non-linear least squares curve-fitting approach using the 

equation shown as Eq. 8, but we were able to simultaneously fit a single Ki value 

to sets of experimental binding inhibition curves obtained at different MHC 

concentrations (Figure A1.9). For this analysis we used an implicit equation version 

of the cubic equation (Addendum C). This fit included values for mPfree, mPbound, 

[MHC], active fraction, Kd and Peptot in addition to Ki. Known or estimated values 

for these parameters could be included in the fit procedure, or values could be 

determined simultaneously with Ki. In practice, we found that the fit had a relatively 

narrow radius of convergence, so that initial values had to be chosen thoughtfully, 

and that Ki values were somewhat coupled to the probe peptide Kd and MHC active 

fraction, although they were relatively independent of mPfree and mPbound.  Best fit 

values for Ki for the test peptides, along with ranges consistent with experimental 

uncertainties in Kd and MHC active fraction, are shown in Table A1.3. 
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Figure A1.9. Fitting competitive binding inhibition curves using a cubic equation. To determine 
Ki values for the A2_P1061, MVA165, and VACWRSPI2_Ag peptides, three curves obtained at 
different [MHC] were simultaneously fit using an implicit cubic equation (Addendum C). Best fit 
Ki values obtained with Kd = 16 nM and fract = 0.2 shown in Table A1.3, along with a range of Ki 
values obtained with reasonable parameter values (mPfree = 22 to 28, mPbound = 115 to 150, Kd = 10 
to 20 nM, and fract = 0.08 to 0.2).  

 

 

Discussion 

In this work, we describe a method whereby MHC-I peptide affinities can be 

measured by direct binding or competition assays. While fluorescence polarization 

has been employed previously to measure the rate of peptide exchange and affinity 

in MHC-I and MHC-II binding assays329,443,444, here we have used a novel 

recombinant HLA-A2 protein with a proteolytically cleavable linker tethered to the 

b2m subunit, which allows for efficient peptide release and measurement of probe 

peptide Kd. We show that relative binding affinities of competitor peptides can be 

measured by determination of IC50 values using this assay. Lastly, to estimate 

absolute Ki from IC50 values, we propose use of a cubic equation and demonstrate 

its application to determination of the Ki of competitor peptides.  

A potential limitation of the ELBM method is the difficulty that may be 

encountered in designing a linker peptide with the appropriate features. For 

Figure 7. Global fitting inhibition data 
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efficient exchange to occur, this peptide must exhibit sufficient affinity for binding 

but also must be weak enough to be released after enzymatic cleavage. A different 

linker peptide for each MHC allele of interest must also be designed due to distinct 

allele-specific binding requirements. Suitable peptides similarly have been difficult 

to design for dipeptide and photocleavable peptide exchange assays, given that 

following cleavage, peptide fragments may inefficiently dissociate from the MHC 

protein430,459. The primary advantage of the ELBM approach over other available 

methods for producing MHC-I for peptide interaction measurements414,428,430,431,444 

is that covalent linkage of a replaceable peptide ligand allows for expression in 

mammalian cells, while at the same time allowing for high efficiency of peptide 

exchange in vitro. We used the ELBM constructs to characterize binding behavior 

of a known HLA-A2 ligand derived from HIV reverse-transcriptase.  

To help understand how observed competition binding curves depend on 

experimental conditions and relate to intrinsic binding affinities for probe and test 

peptides, we developed a cubic equation that relates observable fluorescence 

polarization changes to intrinsic assay parameters. Conventional approaches for 

analyzing competition binding data and extracting intrinsic binding 

parameters451,452 were developed for cases where the receptor concentration is very 

low and the sensitivity of detection high, such as for radiolabeled ligand binding to 

receptors on the surface of intact cells. These approaches were not applicable to our 

FP-based assay of peptides binding to recombinant soluble MHC-I proteins, and 

the derived Ki,app values were highly dependent on experimental conditions. 

Fluorescence polarization assays in general measure the fraction of probe that is 
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bound to receptor, and thus require sufficient receptor concentration to achieve 

substantial fractional occupancy. Moreover, sensitivity of conventional microplate 

fluorescence readers in polarization mode is limited to probe concentrations of ~25 

nM or greater, which is in the vicinity of many MHC-I-peptide binding constants. 

Thus, key assumptions used in conventional competition binding analysis to relate 

observed IC50 values to intrinsic Ki do not hold for our experimental conditions. 

Despite these caveats, relative IC50 values reliably reported relative binding 

affinity. In order to explore estimation of absolute Ki values from our competition 

binding data, we derived from first principles a cubic equation relating 

concentrations of all bound and free species present in the reactions and their 

binding constants. We also derived an intrinsic equation relating observed 

fluorescence polarization changes to these parameters, which proved more useful 

for routine curve fitting. Similar development of cubic equations for fitting other 

types of competition binding assays have been presented previously457,458. Using 

this approach, we were able to estimate intrinsic binding constants for a set of 

vaccinia-derived HLA-A2-binding peptides, although robust curve fitting required 

experiments at a range of MHC concentrations as well as a previously-determined 

value for the Kd of the probe peptide. 

The ELBM approach may also represent a useful tool in additional 

applications such as generation of MHC-I tetramers with different peptide ligands 

to characterize antigen-specific T cell responses. ELBM potentially additionally 

could be employed to produce MHC-I-peptide complexes for biophysical studies. 

In sum, this work describes a novel method for producing specific MHC-I- peptide 
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complexes by peptide exchange, with particular application to assaying peptide 

binding affinity. This method may have applications in epitope discovery and 

assessment of peptide-MHC interactions and may prove useful in vaccine and 

immunotherapy development. 
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Materials and Methods 

 

Peptide synthesis and labeling 

All test peptides and probe peptide (shown in Table A1.1) were synthesized by 21st 

Century Biochemicals (Marlborough, MA). HIV-RT (ILKEPVCGV) was labeled 

with Alexa Fluor 488 C5-maleimide (Thermo Fisher Scientific, Waltham, MA) via 

the thiol of C7. Labeling was performed for 2h at RT, and separation of labeled 

peptide from free fluorophore was performed using Jupiter C18 reverse-phase 

chromatography (Phenomenex, Torrance, CA). 

 

HLA-A*0201 expression and purification 

The heavy chain of epitope-linked b2m (ELBM) consisted of the HLA-A2*0201 

extracellular domain, a linker, the basic half of a heterodimeric leucine zipper460, 

the biotinylation signal peptide 85461, and a His6 tag462, while the light chain 

encoded an N-terminal stuffer peptide (ML9 [MLQEKPFQL] or FL9 

[FIALWIPDL]), a 20-amino-acid linker containing a thrombin cleavage site, b2m, 

an additional 15-amino-acid linker, and the acidic half of the leucine zipper. A 

signal sequence (SS) derived from human ceruloplasmin was also used, with a 2-

amino-acid modification to incorporate an SbfI restriction site, (shown in bold: 

MKILILGIFLFLCSTPAWA → MKILILGIFLFLCSTPLQA). Constructs are 

depicted in Figure 1. For generation of ELBM-ML9 recombinant protein, lentivirus 
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was produced via the calcium phosphate method by co-transfection of 

HEK293T/17 cells (293, ATCC #CRL-11268) using a second-generation lentiviral 

vector based on pWPI (Addgene #12254), which encoded the marker Thy1.1 and 

for which expression was driven by a CMV promoter, together with the packaging 

plasmids pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260). 293 cells 

were cultured in complete DMEM media supplemented with 10% FCS, 1% 

antibiotic-antimycotic (Thermo Fisher) and 50 µM d-biotin (complete d-biotin 

medium, CDM), and transfections were performed with 45 µg each of the heavy 

and light chain expression constructs, 60 µg of psPAX2, and 30 µg of pMD2.G. 

Medium was replaced within 4-6 hours following transfection and was harvested 

at 2.5 days. Supernatants were centrifuged at 3000 g for 30 minutes, filtered through 

a 0.2 µm filter, and lentivirus was pelleted by ultracentrifugation (18000 rpm for 3 

h). Concentrated lentivirus was used to transduce GnTI- HEK293S cells463 

previously transduced with BirA and EGFP and seeded at 2x104 cells/well the day 

before in a 96-well plate in CDM. Fresh CDM was added after 24 h, and cells were 

expanded for a further 4-5 days with media changes. High expression of EGFP and 

Thy1.1 was confirmed post-transduction, and cells were expanded for protein 

production in CELLine 1000 flasks (DWK Life Sciences, Millville, NJ). 

Supernatant was collected once per week for 5-15 weeks, and the bimolecular 

complex was affinity-purified from culture supernatants with the anti-zipper mAb 

2H11 (gift of Ellis Reinherz) using AKTAprime systems (GE, Chicago, IL), 

followed by concentration and buffer exchange using Amicon centrifugation filters 

(Millipore Sigma, Burlington MA). ELBM-FL9 was produced similarly, with the 
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following modifications; ELBM vectors expressed both Thy1.1 and DsRed, 

HEK293T cells were transduced for protein expression, and cells were sorted for 

marker expression following transduction. Protein yield was determined to be ~10 

mg/L. For generation of pre-loaded MHC-peptide complexes for use as controls 

and in ThermoFluor experiments, we refolded E. coli-produced HLA-A2 heavy 

chain and b2m with Alexa488-RT(cys) or indicated peptides as described428.  

 

Fluorescence polarization (FP) assay and IC50 measurements 

An FP assay using 500 nM ELBM-ML9, 25 nM Alexa488-RT(cys), and 0.01 

unit/µl thrombin (MP Biomedicals, Santa Ana, CA) was performed in PBS 

containing 0.1% octylglucoside (Sigma Aldrich, St. Louis, MO) in 96-well black 

polypropylene microtiter plates (Greiner Bio-One, Monroe, NC) in a total volume 

of 120 µl. After 16h incubation at room temperature (RT), FP was measured as 

millipolarization (mP) units in a VICTOR X5 plate reader (Perkin Elmer, Waltham, 

MA) at 495 excitation and 520 emission. SDS-PAGE using a 12% Tris-Tricine gel 

was used to confirm cleavage of ELBM-ML9. To measure competition binding, 

test peptides were added at 2-fold dilutions ranging from 5 µM to ~40 nM. For 

equilibrium experiments, MHC concentration was varied from 4 µM to 7.8125 nM 

(2-fold dilutions) with a fixed probe peptide concentration of 25 nM, or probe 

peptide concentration was varied from 4 µM to 62.5 nM (2-fold dilutions) with a 

fixed MHC concentration of 1 µM. mP measurements in the absence of MHC 

(mPfree) as well as mP measurements of A2 refolded with Alexa488-RT(cys) 
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(mPbound) were also determined to calculate concentration of MHC bound to probe 

peptide. For kinetic analyses, FP values were measured every 7 minutes for ~20h 

at RT with MHC concentrations ranging from 4 µM to 62.5 nM (2-fold dilutions).  

 

Differential scanning fluorimetry (ThermoFluor assay) 

The ThermoFluor assay was performed using 2.5 µM A2 complexes refolded with 

test peptides and a 500-fold dilution of SYPRO orange (Thermo Fisher Scientific) 

in PBS pH 7.4 in a total solution volume of 20 µl in optically clear 96-well plates. 

Temperatures were increased from 20°C to 95°C at 1°C/min in a Bio-Rad C1000 

Thermal Cycler RT-PCR instrument (Bio-Rad, Hercules, CA). To determine the 

Tm or thermal stability of each complex, the temperature derivative of the melting 

curve was computed.  

 

Curve fitting 

Prism (version 7.0c, GraphPad Software, San Diego, CA) was used for curve fitting 

with ordinary unweighted nonlinear least-squares regression. 
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Table A1.1. Peptide sequences 
Peptide Sequence 
ML9 MLQEKPFQ 
FL9 FIALWIPDL 
HIV-RT ILKEPVCGV1 
A2_P1061 GLFDFVNFV 
MVA013 RLYDYFTRV 
MVA165 KVDDTFYYV 
VACWR082_Ag ILDDNLYKV 
VACWRSPI2_Ag HVDGKILFV  
GGV GAGGGVGGV 

1Cysteine residue introduced for addition of fluorescent label underlined 

 

 

 

Table A1.2. Binding and stability parameters for test peptides 

 

 

 

 
  

Peptide Tm (°C) Reported IC50 (nM) Reported t1/2 (h) 
A2_P1061 61.2 1 447,449 N/A 
MVA013 59.8 11 447,449 20.03 446 
MVA165 58.7 4.2 448 12.2 446 
VACWR082_Ag 63.3 2.2 448 26.21 446 
VACWRSPI2_Ag 56.2 39 447, 124 449 4.2 446 
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Table A1.3. IC50 as a function of MHC and estimated Ki using Cheng-Prusoff 
or Munson-Rodbard approaches 

Peptide [MHC] 
(nM) 

IC50 (nM) Ki Cheng-
Prusoff 

Ki Munson-
Rodbard 

Ki cubic 
fit1 

A2_P1061 250 40 24 30  
 50 110 65 47 5 (3-9) 
  1000 230 137 59  
MVA165   250 106 64 51  
 500 284 169 85 23 (17-42) 
 1000 534 319 100  
VACWRSPI2_Ag 250 272 162 103  
 500 553 323 145 60 (49-

138) 
 1000 1249 745 196  

 

1Single value representing global fit to inhibition curves obtained at three MHC concentrations.  
Values in parentheses show range of Ki values obtained from fits allowing for observed 
experimental uncertainty in mPfree, mPbound, Kd, and MHC active fraction parameters. 
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Addendum A. Derivation of a quadratic equation that describes single-site 

binding of a peptide to MHC protein 

 
For a simple reaction between a peptide-binding protein (MHC) and a peptide (pep)  
MHC + pep Þ  MHCpep + MHC + pep 
 
The following equilibrium binding equation applies: 
 
𝐾|= [KLM][GFG][KLMGFG]

     Eq. A.1 
 
where [MHC] and [pep] refer to free (unbound) species and Kd is the equilibrium 
dissociation constant. 
 
Typically, only the total concentrations are known: 
 
𝑀𝐻𝐶CDC = [𝑀𝐻𝐶] + [𝑀𝐻𝐶𝑝𝑒𝑝]     Eq. A.2 
𝑃𝑒𝑝CDC = [𝑝𝑒𝑝] + [𝑀𝐻𝐶𝑝𝑒𝑝].     Eq. A.3 
 
Substituting these into the equilibrium binding equation: 
 
𝐾|	= (KLMHIH8[KLMGFG])	(EFGHIH8[KLMGFG])[KLMGFG]

     Eq. A.4 
 
and solving for [MHCpep] by applying the quadratic formula:  
 
𝐾|[𝑀𝐻𝐶𝑝𝑒𝑝] = (𝑀𝐻𝐶CDC − [𝑀𝐻𝐶𝑝𝑒𝑝])	(𝑃𝑒𝑝CDC − [𝑀𝐻𝐶𝑝𝑒𝑝])     Eq. A.5 
 
𝐾|[𝑀𝐻𝐶𝑝𝑒𝑝] = 𝑀𝐻𝐶CDC𝑃𝑒𝑝CDC − 𝑀𝐻𝐶CDC[𝑀𝐻𝐶𝑝𝑒𝑝] − 𝑃𝑒𝑝CDC[𝑀𝐻𝐶𝑝𝑒𝑝] +
[𝑀𝐻𝐶𝑝𝑒𝑝]0     Eq. A.6 
 
0	= [𝑀𝐻𝐶𝑝𝑒𝑝]0 − (𝑀𝐻𝐶CDC + 𝑃𝑒𝑝CDC + 𝐾|)[𝑀𝐻𝐶𝑝𝑒𝑝] + 𝑀𝐻𝐶CDC     Eq. A.7 
 
gives the desired equation relating the amount of bound complex MHCpep to the total 
MHC and peptide concentrations: 
 

[𝑀𝐻𝐶𝑝𝑒𝑝] = (KLMHIHPEFGHIHPNO)±R(KLMHIHPEFGHIHPNO)S8TKLMHIHEFGHIH
0

     Eq. A.8 
  
In all cases, only the second (negative) root gives a physically reasonable solution with 
[MHCpep] greater than zero and less than MHCtot and Peptot. 
 
If [MHCpep] values have been determined from the experimental data, these can be fit 
using this equation.  
 
Alternatively, for fluorescence polarization experiments the experimental mP values can 
be fit directly, assuming additivity of polarization values, by substituting Eq. A.8 into Eq. 
1 and solving for mPobs: 
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𝑚𝑃DVW =
XYEZI[\O8YE]^__`(KLMHIHPEFGHIHPNO)±R(8KLMHIH8EFGHIH8NO)S8TKLMHIHEFGHIH

0
+ 𝑚𝑃abFF     Eq. A.9 

 
To account for the effect of incomplete cleavage and/or peptide release, MHCtot is replaced 
with fract*MHCtot, where fract represents the active fraction, and fract*MHCtot the effective 
concentration of MHC molecules participating in the binding reaction: 
 
 𝑚𝑃DVW =

XYEZI[\O8YE]^__`(abcdHKLMHIHPEFGHIHPNO)±R(8abcdHKLMHIH8EFGHIH8NO)S8TabcdHKLMHIHEFGHIH
0

+ 𝑚𝑃abFF     Eq. A.10 
 
This equation was used to fit data in Figure A1.5, using the following constraints and initial 
values for the non-linear least squares minimization: mPbound and mPfree, constrained to 
experimentally determined values or fit from initial values corresponding to minimum and 
maximum observed values in entire experiment; fract, fit from initial value = 1.0; MHCtot 
and Peptot, constrained to known values or used as independent variables; Kd, fit from initial 
value corresponding to concentration at which mPobs was half-maximal. 
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Addendum B. Derivation of a cubic equation that describes single-site 

competitive binding of two peptides to an MHC protein 

 
For a reaction between a peptide-binding protein (MHC) and two peptides (pep1 and pep2) 
competing for binding to the same site: 
 
MHC + pep1 + pep2 Þ MHCpep1 + MHCpep2 + MHC + pep1 + pep2 
 
Two binding equilibria apply simultaneously: 
 
𝐾|,GFG.= [KLM][GFG.][KLMGFG.]

      Eq. B.1 
and  
𝐾|,GFG0= [KLM][GFG0][KLMGFG.]

     Eq. B.2 
 
where Kd,pep1 and Kd,pep2 refer to the equilibrium dissociation constants for binding of pep1 
and pep2 to MHC. In a typical experiment, one peptide would be labeled (referred to as the 
“probe” peptide) and used at a constant concentration with the concentration of the other 
peptide (referred to as the “test” peptide) varied over a wide range.  The analysis that 
follows is general for arbitrary concentrations of MHC and peptides. 
 
In this case the conservation equations are: 
  
𝑀𝐻𝐶CDC = [𝑀𝐻𝐶] + [𝑀𝐻𝐶𝑝𝑒𝑝1] + [𝑀𝐻𝐶𝑝𝑒𝑝2]     Eq. B.3 
𝑃𝑒𝑝1CDC = [𝑝𝑒𝑝1] + [𝑀𝐻𝐶𝑝𝑒𝑝1]     Eq. B.4 
𝑃𝑒𝑝2CDC = [𝑝𝑒𝑝2] + [𝑀𝐻𝐶𝑝𝑒𝑝2]     Eq. B.5 
 
Using the equation for conservation of pep1 and solving for the bound form we obtain: 
 
𝐾|,GFG.= [KLM](EFG.HIH8[KLMGFG.])[KLMGFG.]

      Eq. B.6 
 
𝐾|,GFG.[𝑀𝐻𝐶𝑝𝑒𝑝1]=[𝑀𝐻𝐶](𝑃𝑒𝑝1CDC − [𝑀𝐻𝐶𝑝𝑒𝑝1])     Eq. B.7 
 
𝐾|,GFG.[𝑀𝐻𝐶𝑝𝑒𝑝1]=[𝑀𝐻𝐶]𝑃𝑒𝑝1CDC − [𝑀𝐻𝐶][𝑀𝐻𝐶𝑝𝑒𝑝1]      Eq. B.8 
 
[𝑀𝐻𝐶𝑝𝑒𝑝1]= [KLM]EFG.HIH

NO,k_kwP[KLM]
     Eq. B.9 

 
Similarly, for pep2: 

[𝑀𝐻𝐶𝑝𝑒𝑝2]= [KLM]EFG0HIH
NO,k_kSP[KLM]

     Eq. B.10 

 
Combining these with the conservation equation for MHC: 
 
𝑀𝐻𝐶CDC = [𝑀𝐻𝐶] + [KLM]EFG.HIH

NO,k_kwP[KLM]
+ [KLM]EFG0HIH

NO,k_kSP[KLM]
     Eq. B.11 
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and solving for the free MHC concentration: 
 
𝑀𝐻𝐶CDC − [𝑀𝐻𝐶] =

[KLM]EFG.HIH
NO,k_kwP[KLM]

+ [KLM]EFG0HIH
NO,k_kSP[KLM]

     Eq. B.12 

  
(𝑀𝐻𝐶CDC − [𝑀𝐻𝐶])X𝐾|,GFG. + [𝑀𝐻𝐶]`X𝐾|,GFG0 + [𝑀𝐻𝐶]` = X𝐾|,GFG0 +
[𝑀𝐻𝐶]`([𝑀𝐻𝐶]𝑃𝑒𝑝1CDC) + X𝐾|,GFG. + [𝑀𝐻𝐶]`([𝑀𝐻𝐶]𝑃𝑒𝑝2CDC)      Eq. B.13 

 
provides a cubic equation relating the concentration of free MHC to the known total 
concentrations of MHC, pep1, and pep2: 
 
 0 = [𝑀𝐻𝐶]� + X−𝑀𝐻𝐶CDC + 𝐾|,GFG.+	𝐾|,GFG0 + 𝑃𝑒𝑝1CDC + 𝑃𝑒𝑝2CDC`[𝑀𝐻𝐶]0 +
X−𝑀𝐻𝐶CDC𝐾|,GFG. − 𝑀𝐻𝐶CDC𝐾|,GFG0 +
𝐾|,GFG.𝐾|,GFG0	+	𝐾|,GFG.𝑃𝑒𝑝2CDC	+	𝐾|,GFG0𝑃𝑒𝑝1CDC`[𝑀𝐻𝐶] − X𝑀𝐻𝐶CDC𝐾|,GFG.𝐾|,GFG0`  
Eq. B.14 
 
Although there is not a simple closed-form solution to this cubic equation, analytical 
solutions are available that differ depending on the value of the discriminant �,  
 
𝛥 = 18𝑎𝑏𝑐𝑑 − 4𝑏�𝑑 +	𝑏0𝑐0 − 4𝑎𝑐� − 27𝑎0𝑑0     Eq. B.15 
 
where a,b,c,d are the polynomial coefficients  
 
𝑎𝑥� + 𝑏𝑥� + 𝑐𝑥 + 𝑑 = 	0     Eq. B.16 
 
There is one real solution for 𝛥 < 0 and multiple solutions for 𝛥 >= 0.  In the case of 
multiple solutions, these have to be evaluated for physical reasonableness, 
[MHC]>=MHCtot.  
 
We used this equation to simulate competition binding data under different conditions 
(Figure A1.8).  
 
We attempted to use this equation to fit experimental competition binding data, but 
implementation in Prism was difficult and the refinements did not converge well, so instead 
we used an implicit equation as described in Addendum C. 
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Addendum C. Derivation of a function that describes single-site competitive 

binding of two peptides to an MHC protein as an implicit equation  

 
 
The scientific graphing and analysis program Prism (GraphPad Software, San Diego, CA) 
accepts implicit equations for fitting by numerical approximation, and we used this 
approach to fit experimentally observed values of mPobs as a function of the total 
concentrations of probe and test peptides [Pep1tot] and [Pep2tot], the equilibrium 
dissociation constants for these peptides Kd,pep1 and Kd,pep2, the total MHC concentration 
Mtot and its active fraction fract, and the polarization values for free probe peptide and probe 
peptide fully bound to MHC, mPfree and mPbound.  
 
The concentration of the bound form of the probe peptide [MHCpep1] can be expressed as 
an implicit equation, making use of equilibrium binding and conservation equations 
similarly to the derivation in Appendices A and B: 
 
𝐾|,GFG.= [KLM][GFG.][KLMGFG.]

      Eq. C.1 
 
[𝑀𝐻𝐶𝑝𝑒𝑝1]= [KLM][GFG.]

NO,k_kw
      Eq. C.2 

 
[𝑀𝐻𝐶𝑝𝑒𝑝1]= (KLMHIH8[KLMGFG.]8[KLMGFG0])(EFG.HIH8[KLMGFG.])

NO,k_kw
     Eq. C.3 

 
The value for the concentration of bound inhibitor peptide [MHCpep2] can be replaced 
using the quadratic equation relating [MHCpep2] to the total concentrations MHCtot and 
Pep2tot, the inhibitor binding constant Kd,pep2, and the concentration of bound probe peptide 
[MHCpep1], exactly as in Addendum A, but taking into account the reduction in MHCtot 
due to pep1 binding:  
 
 
𝐾|,GFG0 = [KLM][GFG0][KLMGFG0]

     Eq. C.4 
 
𝐾|,GFG0[𝑀𝐻𝐶𝑝𝑒𝑝2] = (𝑀𝐻𝐶CDC − [𝑀𝐻𝐶𝑝𝑒𝑝1] − [𝑀𝐻𝐶𝑝𝑒𝑝2])(𝑃𝑒𝑝2CDC −
[𝑀𝐻𝐶𝑝𝑒𝑝2])     Eq. C.5 
 
𝐾|,GFG0[𝑀𝐻𝐶𝑝𝑒𝑝2] = 𝑀𝐻𝐶CDC𝑃𝑒𝑝2CDC − 𝑀𝐻𝐶CDC[𝑀𝐻𝐶𝑝𝑒𝑝2] − 𝑃𝑒𝑝2CDC[𝑀𝐻𝐶𝑝𝑒𝑝1] +

[𝑀𝐻𝐶𝑝𝑒𝑝1][𝑀𝐻𝐶𝑝𝑒𝑝2] − 𝑃𝑒𝑝2CDC[𝑀𝐻𝐶𝑝𝑒𝑝2] +
[𝑀𝐻𝐶𝑝𝑒𝑝2]0      Eq. C.6 

 
0	= [𝑀𝐻𝐶𝑝𝑒𝑝2]0 − X𝑀𝐻𝐶CDC + 𝑃𝑒𝑝2CDC + 𝐾|,GFG0 − [𝑀𝐻𝐶𝑝𝑒𝑝1]`[𝑀𝐻𝐶𝑝𝑒𝑝2] +

𝑀𝐻𝐶CDC𝑃𝑒𝑝2CDC − [𝑀𝐻𝐶𝑝𝑒𝑝1]𝑃𝑒𝑝2CDC    Eq. C.7 
 
[𝑀𝐻𝐶𝑝𝑒𝑝2] = 8V±√VS8T�s

0�
     Eq. C.8 

where 
𝑎 = 1     Eq. C.9 
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𝑏 = −X𝑀𝐻𝐶CDC + 𝑃𝑒𝑝2CDC + 𝐾|,GFG0 − [𝑀𝐻𝐶𝑝𝑒𝑝1]`     Eq. C.10 
𝑐 = 𝑀𝐻𝐶CDC𝑃𝑒𝑝2CDC − [𝑀𝐻𝐶𝑝𝑒𝑝1]𝑃𝑒𝑝2CDC     Eq. C.11 
 
using the formula for [MHCpep2] (Eq C.8) and substituting into the equation for 
[MHCpep1] above (Eq. C.3), we obtain the desired relationship between the observable 
quantity [MHCpep1] and total concentrations and binding constants, which are fixed in the 
experiment. 
 

[𝑀𝐻𝐶𝑝𝑒𝑝1] = 
�KLMHIH8[KLMGFG.]8�

�Z±RZS��cd
Sc ��(EFG.HIH8[KLMGFG.])

NO,k_kw
     Eq. C.12 

 
with a,b,c as defined above.  This implicit equation can be used directly for curve fitting in 
Prism if [MHCpep1] has been calculated as described in the main text using Eq. C.13: 
 
[𝑀𝐻𝐶𝑝𝑒𝑝1] =

XYEIZ�8YE]^__`
XYEZI[\O8YE]^__`

𝑃𝑒𝑝1CDC     Eq. C.13 

 
Alternatively, Eq. C.12 can be recast in terms of mPobs instead of [MHCpep1] using Eq. 
C.13, to allow fitting and estimation of uncertainty values for mPbound and mPfree: 
 

𝑚𝑃DVW = 
�KLMHIH8

�fuIZ��fu]^__�

�fuZI[\O�fu]^__�
EFG.HIH8�

�Z±RZS��cd
Sc ���EFG.HIH8

�fuIZ��fu]^__�

�fuZI[\O�fu]^__�
EFG.HIH�XYEZI[\O8YE]^__`

NO,k_kwEFG.HIH
+ 𝑚𝑃abFF   

 
Eq. C.14 
 
Finally, we account for the active fraction of the MHC preparation as in Eq. A.10: 
 
  

𝑚𝑃DVW = 
�abcdHKLMHIH8

�fuIZ��fu]^__�

�fuZI[\O�fu]^__�
EFG.HIH8�

�Z±RZS��cd
Sc ���EFG.HIH8

�fuIZ��fu]^__�

�fuZI[\O�fu]^__�
EFG.HIH�XYEZI[\O8YE]^__`

NO,k_kwEFG.HIH
+ 𝑚𝑃abFF   

 
Eq. C.15 
 
where 
 
𝑎 = 1	     Eq. C.16 
𝑏 = −X𝑓𝑟�sC𝑀𝐻𝐶CDC + 𝑃𝑒𝑝2CDC + 𝐾|,GFG0 − [𝑀𝐻𝐶𝑝𝑒𝑝1]`     Eq. C.17 
𝑐 = 𝑓𝑟�sC𝑀𝐻𝐶CDC𝑃𝑒𝑝2CDC − [𝑀𝐻𝐶𝑝𝑒𝑝1]𝑃𝑒𝑝2CDC     Eq. C.18 
 
 
This implicit equation relating mPobs to Pep2tot, where pep1 is the probe peptide and pep2 
is the test peptide, was used to fit the competition binding data in Figure A1.9. Initial values 
and constraints for non-linear least squares fitting were the same as described in Addendum 
A, except Kd,pep1 was constrained to its experimental value as determined by simultaneous 
fitting of MHC and peptide titrations in Figure A1.5. 
  



 208 

APPENDIX II 

Identification of HLA-A2-restricted CTL epitopes derived from human 

herpesvirus 6B 
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Abstract 

 

Human herpesvirus 6 (HHV-6) is a double-stranded DNA virus for which nearly 

all humans are seropositive by the age of three years. Two HHV-6 species have 

been identified, HHV-6A and HHV-6B, each of which is distinct in its antigenic 

properties, tissue tropism, and epidemiology. Initial encounter with HHV-6B 

results in a febrile illness associated with roseola infantum in children, whereas 

HHV-6A infection most often occurs later in life and has been shown to be more 

neurotropic in its pathogenesis. As primary infection is usually self-limiting, the 

principal clinical burden lies with viral reactivation, which has been associated with 

myriad conditions, including transplant dysfunction and rejection, multiple 

sclerosis, and encephalitis. Currently, the immune response to HHV-6 is poorly 

understood, and limited studies have been performed with regard to epitope 

discovery, perhaps due to the low frequency of HHV-6-specific T cells. In this 

work, we performed binding studies using putative HLA-A2-restricted HHV-6B 

epitopes, and then examined a subset of these peptides as epitopes using 

restimulation assays with PBMCs from healthy subjects. Finally, we generated 

tetramers using 3 of the peptides reproducibly identified as an epitope in multiple 

donors. These results thus report novel HHV-6B-derived MHC-I epitopes and 

provide information potentially important in treatment of reactivated HHV-6. 
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Introduction 

 

Human herpesvirus 6 (HHV-6) is the sixth identified member of the double-

stranded DNA human herpesviridae family. Discovered in 1986, HHV-6 has since 

been classified as two variants or subspecies, HHV-6A and HHV-6B, each of which 

is distinct in its epidemiology, tissue tropism, and effect on the host immune 

system464. Primary infection with HHV-6B most often occurs within the first three 

years of life and results in a self-limiting febrile illness commonly known as roseola 

or sixth disease465. Infection with HHV-6A is less prevalent, occurs later in life, 

and is more neurotropic and neurovirulent in its pathogenesis466. Following primary 

infection, HHV-6 establishes a latent infection thus far detected in the brain, 

salivary glands, and periphery467. Reactivation of either virus represents the 

primary clinical burden of HHV-6 infection and occurs most often in 

immunocompromised individuals such as transplant or AIDS patients, but 

associations with a multitude of diseases including multiple sclerosis, chronic 

fatigue syndrome, and cancer exist467,468. Moreover, HHV-6 is the only known 

human herpesvirus capable of integration into chromosome telomeres and 

transmission through the germline469. Despite the prevalence of HHV-6 in the 

human population and the complications associated with its reactivation, 

comparatively little data exists with regard to presentation of HHV-6 antigens or 

modulation of the host immune response by HHV-6. 

 Much like its betaherpesviridae family members HHV-5 (CMV) and HHV-

7470,471, HHV-6 may have evolved to specifically inhibit antigen presentation in 
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order to subvert the immune response. Viral evasion strategies in the context of 

MHC-I antigen presentation have been shown to include inhibition of the 

proteasome, TAP, or tapasin, retention of MHC complexes in the ER, induction of 

ER-associated degradation (ERAD), and diversion of MHC complexes to the 

lysosome472. Study of the MHC-I-specific responses associated with HHV-6 

infection are thus important in design of potential treatment strategies and in 

understanding of the disease. Nastke et al.473 identified 11 MHC-II epitopes using 

a systematic approach in which they used a DR-binding assay, ELISPOT to assess 

the peptide-specific response, and tetramers to stain T cells specific for the epitopes 

identified474. Here, a similar approach will be undertaken to identify CTL HHV-6-

derived epitopes. 

 

 

Results 

 

Evaluation of binding affinity for putative HLA-A2-restricted HHV-6B epitopes  

The IEDB (www.iedb.org), BIMAS (www-bimas.cit.nih.gov), and SYFPETHI 

(www.syfpeithi.de) prediction algorithms were used to design a set of 147 predicted 

HLA-A2-binding peptides derived from the HHV-6B genome. The binding 

affinities of these peptides were assessed using a fluorescence polarization assay 

previously optimized to measure IC50 values (Appendix I), with the goal of 

selecting a smaller set of HLA-A2-binding peptides to evaluate as HHV-6B 

epitopes using human CD8 T cells. We performed a screen in which competitor 
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peptides were serially diluted to compute IC50 values, which revealed surprising 

results. Only 6 out of 147 peptides were found to be nonbinders; the remaining 141  

peptides ranged in IC50 values from 71 nM to 7.64 µM (Figure A2.1, Table A2.1, 

data summarized in Table A2.2). 

Identification of HLA-A2-restricted HHV-6B epitopes 

In order to determine whether the peptides that were determined to bind to HLA-

A2 serve as actual epitopes for CD8+ T cells, we next raised CD8 T cell lines against 

peptide pools. We chose 57 peptides based on their parent proteins; proteins that 

were relatively ubiquitous as well as easily accessed by the MHC-I host machinery 

(e.g. capsid, tegument, and glycoprotein) were selected as putative epitopes. 

Peptides were grouped into pools of 4-9 peptides with similar IC50 values (Tables 

A2.3 and A2.4). PBMCs were isolated from healthy HLA-A2-positive donors, and 

DCs generated from CD14+ monocytes were pulsed with peptides and co-cultured 

Figure A2.1. Results of binding assay to determine IC50 
values for HHV-6B-derived peptides. 
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with autologous CD8+ T cells. Following additional restimulation, reactivity to 

peptide pools was assessed by IFN-g ELISPOT, and pools were then deconvoluted. 

Of the 60 peptides tested, responses were observed in 83% of the peptides (50/60), 

and 29 peptides were considered to elicit “strong responses” (please see Materials 

and Methods). Results of these assays are further described in Table A2.3, with 

responses to peptides derived from proteins involved in the early vs. late phases of 

HHV-6 infection shown in Table A2.4. In addition, we performed tetramer studies 

by refolding peptides with MHC-I subunits and found these reagents to be suitable 

for identification of HHV-6B T cell responses (Figure A2.2). 

 
 
 

Peptide-specific
CD8 T cell line

Nonspecific
CD8 T cell line

MLFRLWVFVVLLEIIYKL ILWLMYHYV

1.25%

PE tetramer

A
PC

 te
tr
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0.14%

1.07%

0.12% 0.1%

4.27%

Figure A2.2. Tetramer staining for T cells specific for selected epitopes. CD8 T cell lines were 
raised against peptide pools and stained with tetramers specific for peptides contained within the 
pools against which the lines were raised (following gating on Live/Dead-CD8+CD4- cells). 
Staining was also performed using a CD8 T cell line raised against a different peptide pool 
(nonspecific CD8 T cell line) as a negative control. Monomers were tetramerized with both 
streptavidin-PE and streptavidin-APC to allow for more sensitive detection of epitope-specific 
responses. 
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Table A2.1. HHV-6B-derived peptides and IC50 values 
Core epitope Parent protein Gene 

name 
IC50  
(nM)* 

ILISEIAFL >gi|19263428|ref|NP_597817.1|G-protein_coupled_receptor_fragment B3 314.9 

FLYAFYGKV >gi|9633148|ref|NP_050258.1|hypothetical_protein_HhV6Bgp083 B7 224.1 

FLLKWVRTL >gi|9633158|ref|NP_050268.1|hypothetical_protein_HhV6Bgp093 B8 617.4 

LLPLGLITL >gi|9633070|ref|NP_050176.1|putative_DNA-directed_RNA_polymerase_II DR1 148.9 

YLLSHSVSL >gi|9633070|ref|NP_050176.1|putative_DNA-directed_RNA_polymerase_II DR1 107.2 

VLDGGAWRV >gi|9633074|ref|NP_050177.1|hypothetical_protein_HhV6Bgp002 DR3 217 

RLASQILSL >gi|9633161|ref|NP_050271.1|spliced_envelope_glycoprotein U100 1010 

YLVTSINKL >gi|9633084|ref|NP_050192.1|antigenic_virion_protein U11 785.9 

SLMSGVEPL >gi|9633084|ref|NP_050192.1|antigenic_virion_protein U11 341.8 

ILWLMYHYV >gi|9633084|ref|NP_050192.1|antigenic_virion_protein U11 320.6 

VLLEIIYKL >gi|9633170|ref|NP_050196.1|hypothetical_protein_HhV6Bgp021 U12 354.4 

SMLAIIATI >gi|9633171|ref|NP_050193.1|G-protein_coupled_receptor U12 181.7 

NLWKFATIV >gi|9633092|ref|NP_050197.1|transcription_regulator U12 314.9 

CLTKTLVFV >gi|9633092|ref|NP_050197.1|transcription_regulator U12 1120 

LLYPKTMFV >gi|9633092|ref|NP_050197.1|transcription_regulator U12 4193 

FLLSSTGQV >gi|9633088|ref|NP_050199.1|immediate-early_protein_4 U12 196.8 

KLFEICIFA >gi|9633086|ref|NP_050195.1|hypothetical_protein_HhV6Bgp020 U12 371.3 

FLAMGVRKL >gi|9633172|ref|NP_050184.1|transactivator U2 472.9 

VLMDQVGRV >gi|9633172|ref|NP_050184.1|transactivator U2 257.6 

HLWTMQLPV >gi|9633172|ref|NP_050184.1|transactivator U2 132.4 

TLAEGIGKL >gi|9633089|ref|NP_050200.1|glycoprotein U20 204.3 

FLARNTTYV >gi|9633089|ref|NP_050200.1|glycoprotein U20 541.9 

RLHAGLQYV >gi|9633089|ref|NP_050200.1|glycoprotein U20 632.6 

FLVFRCFQV >gi|9633090|ref|NP_050201.1|putative_membrane_glycoprotein U21 5668 

VLAGLLWIL >gi|9633090|ref|NP_050201.1|putative_membrane_glycoprotein U21 143.5 

DLILKIASL >gi|9633090|ref|NP_050201.1|putative_membrane_glycoprotein U21 NB 

FLPRYERFV >gi|9633093|ref|NP_050202.1|glycoprotein U22 1084 

FLSSLVIWI >gi|9633169|ref|NP_050203.1|glycoprotein U23 330.8 

SLLDVVFIV >gi|9633096|ref|NP_050206.1|hypothetical_protein_HhV6Bgp025 U25 267.9 

KLPSFLSAV >gi|9633097|ref|NP_050207.1|hypothetical_protein_HhV6Bgp033 U26 217.1 

FLSDTEHFL >gi|9633098|ref|NP_050208.1|Polymerase_processivity_factor U27 176 

MMCEHIYYT >gi|9633099|ref|NP_050209.1|large_ribonuclease_reductase U28 172.8 

LLYKTGFKV >gi|9633099|ref|NP_050209.1|large_ribonuclease_reductase U28 790.2 

ELTEEIDFV >gi|9633099|ref|NP_050209.1|large_ribonuclease_reductase U28 2433 

LLAPELENL >gi|9633100|ref|NP_050210.1|capsid_assembly_and_DNA_maturation U29 201.3 

FLCSNAFNV >gi|9633100|ref|NP_050210.1|capsid_assembly_and_DNA_maturation U29 235.8 

DLSEKKVFV >gi|9633100|ref|NP_050210.1|capsid_assembly_and_DNA_maturation U29 1755 
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KLQYGIYVV >gi|9633100|ref|NP_050210.1|capsid_assembly_and_DNA_maturation U29 239.2 

FLKGDIVVL >gi|9633078|ref|NP_050185.1|transactivator U3 209.9 

QLVSSLQFV >gi|9633078|ref|NP_050185.1|transactivator U3 535.4 

ALQKFIDTV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 717.8 

WLYAFSINV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 184.5 

FLFFTASTV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 342.9 

NLFEKWGDV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 528.6 

KLYSWFLHI >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 213.6 

STIEFVYMV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 110.4 

LLNAYTDYL >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 123.2 

MLLNIITSV >gi|9633101|ref|NP_050211.1|capsid_assembly_protein U30 NB 

YLVNLYFNI >gi|9633102|ref|NP_050212.1|large_tegument_protein U31 757.2 

ALFESVLTL >gi|9633102|ref|NP_050212.1|large_tegument_protein U31 136.8 

FLWNRVFHL >gi|9633102|ref|NP_050212.1|large_tegument_protein U31 311.5 

KLYDNTQFL >gi|9633102|ref|NP_050212.1|large_tegument_protein U31 370.9 

SQFNWTIYL >gi|9633102|ref|NP_050212.1|large_tegument_protein U31 3653 

FLFEQQLLL >gi|9633104|ref|NP_050214.1|capsid_protein U33 216.5 

LLRQLLAPL >gi|9633104|ref|NP_050214.1|capsid_protein U33 1135 

GLFVLLAYL >gi|9633104|ref|NP_050214.1|capsid_protein U33 NB 

GLATSVISL >gi|9633104|ref|NP_050214.1|capsid_protein U33 210.8 

VLLAYLYFV >gi|9633104|ref|NP_050214.1|capsid_protein U33 5293 

YLLSLWEHV >gi|9633105|ref|NP_050215.1|putative_virion_protein U34 272.7 

LLALYFCYV >gi|9633105|ref|NP_050215.1|putative_virion_protein U34 647.8 

KMYDELLSA >gi|9633105|ref|NP_050215.1|putative_virion_protein U34 188.8 

KMIDRVQFV >gi|9633107|ref|NP_050217.1|virion_protein U36 569.3 

MLCSTVDYV >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 288.8 

FLSFGWYNV >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 181.7 

VLYLDMYPV >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 107.2 

ELAEDPNYV >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 1607 

YLDETFSAI >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 223.8 

KQINYHYEV >gi|9633109|ref|NP_050219.1|DNA_polymerase U38 345 

KMSEGFFII >gi|9633110|ref|NP_050220.1|Glycoprotein_B U39 159.8 

RLLELLDSL >gi|9633079|ref|NP_050186.1|hypothetical_protein_HhV6Bgp009 U4 257.8 

VLEGFLNTL >gi|9633079|ref|NP_050186.1|hypothetical_protein_HhV6Bgp009 U4 307.4 

SLINKVVSV >gi|9633111|ref|NP_050221.1|transport/capsid_assembly U40 4628 

QLISKINSV >gi|9633111|ref|NP_050221.1|transport/capsid_assembly U40 982.7 

RLIDLVTGL >gi|9633111|ref|NP_050221.1|transport/capsid_assembly U40 460.9 

RLYVGSIYV >gi|9633111|ref|NP_050221.1|transport/capsid_assembly U40 539 

SLHGLTSKL >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 650.8 
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SLMERNSPV >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 532.1 

FLTFAYYKV >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 248.2 

SIQEYLVYV >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 184.5 

DLYKSGKYV >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 NB 

FLMLVDSVV >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 151.3 

LLSYVVWNL >gi|9633112|ref|NP_050222.1|major_DNA_binding_protein U41 770.9 

CLAFTVATV >gi|9633113|ref|NP_050223.1|transactivator U42 342.9 

LMGDRIFSL >gi|9633113|ref|NP_050223.1|transactivator U42 154.2 

SLWLFYILV >gi|9633117|ref|NP_050227.1|putative_membrane_/secreted_protein U46 212.6 

YVSLWLFYI >gi|9633117|ref|NP_050227.1|putative_membrane_/secreted_protein U46 3201 

MLFRLWVFV >gi|9633119|ref|NP_050229.1|glycoprotein_H U48 103.1 

NLLSIDSFV >gi|9633119|ref|NP_050229.1|glycoprotein_H U48 369.1 

SLNELIFPV >gi|9633119|ref|NP_050229.1|glycoprotein_H U48 112.6 

YLRSGLVAI >gi|9633121|ref|NP_050231.1|viron_protein U50 1290 

LLLGTIAHL >gi|9633122|ref|NP_050232.1|G-protein_coupled_receptor U51 168 

FMALPVLKV >gi|9633122|ref|NP_050232.1|G-protein_coupled_receptor U51 237.4 

WLMLVYSVV >gi|9633122|ref|NP_050232.1|G-protein_coupled_receptor U51 376.3 

ALAKVCFPI >gi|9633122|ref|NP_050232.1|G-protein_coupled_receptor U51 439.8 

FMDEFGLSL >gi|9633123|ref|NP_050233.1|hypothetical_protein_HhV6Bgp058 U52 155.3 

LLCGNLLIL >gi|9633125|ref|NP_050235.1|virion_transactivator U54 1165 

YLFNADIWI >gi|9633125|ref|NP_050235.1|virion_transactivator U54 202.1 

KLYPFLWFA >gi|9633126|ref|NP_050236.1|hypothetical_protein_HhV6Bgp062 U55 229.2 

FLTIFLRNV >gi|9633126|ref|NP_050236.1|hypothetical_protein_HhV6Bgp062 U55 441.2 

FLWFAQEPL >gi|9633126|ref|NP_050236.1|hypothetical_protein_HhV6Bgp062 U55 101.1 

LLCIGLIAV >gi|9633127|ref|NP_050237.1|capsid_protein U56 384.1 

KLGDWELTV >gi|9633127|ref|NP_050237.1|capsid_protein U56 192.1 

VLLGPIGSI >gi|9633128|ref|NP_050238.1|major_capsid_protein U57 348.8 

CLISPITTL >gi|9633128|ref|NP_050238.1|major_capsid_protein U57 559.9 

NLYESRQEV >gi|9633128|ref|NP_050238.1|major_capsid_protein U57 682.7 

LQLTFFFPL >gi|9633128|ref|NP_050238.1|major_capsid_protein U57 374.9 

YLEYYPYFL >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 178 

LLLYYDYSL >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 138.9 

VLLQELNNV >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 1061 

KLLEYLAET >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 248.2 

YLAETSTAI >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 695.7 

FVYGKTLYV >gi|9633129|ref|NP_050239.1|hypothetical_protein_HhV6Bgp064 U58 370.1 

TLPDTLLSV >gi|9633130|ref|NP_050240.1|hypothetical_protein_HhV6Bgp065 U59 212.6 

YLRDIGSRV >gi|9633133|ref|NP_050244.1|tegument_protein U64 2871 

FLLKNIEGI >gi|9633135|ref|NP_050241.1|Putative_terminase U66 140.9 
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DLECLLWLV >gi|9633136|ref|NP_050246.1|hypothetical_protein_HhV6Bgp071 U67 NB 

VLAEHVVLL >gi|9633138|ref|NP_050248.1|Phosphotransferase U69 342.3 

FLTNIVFIV >gi|9633091|ref|NP_050187.1|hypothetical_protein_HhV6Bgp013 U7 805.3 

MLNGELPVL >gi|9633091|ref|NP_050187.1|hypothetical_protein_HhV6Bgp013 U7 138 

FITKFLTPV >gi|9633091|ref|NP_050187.1|hypothetical_protein_HhV6Bgp013 U7 141.6 

FLLDKLYAI >gi|9633139|ref|NP_050249.1|Alkaline_exonuclease U70 103.1 

LLLDPSSGV >gi|9633139|ref|NP_050249.1|Alkaline_exonuclease U70 401 

KLSVFQKAV >gi|9633139|ref|NP_050249.1|Alkaline_exonuclease U70 2312 

ILLTTEFTV >gi|9633140|ref|NP_050250.1|Myristylated_virion_protein U71 465.5 

LVMACIYSI >gi|9633141|ref|NP_050251.1|glycoprotein_M U72 603.7 

LIMAILFLL >gi|9633141|ref|NP_050251.1|glycoprotein_M U72 NB 

IMDTFQLFV >gi|9633141|ref|NP_050251.1|glycoprotein_M U72 153.7 

MLIDLAFLA >gi|9633142|ref|NP_050252.1|origin_binding_protein U73 2139 

FLCDEYFVL >gi|9633142|ref|NP_050252.1|origin_binding_protein U73 97.92 

FLSFLQILV >gi|9633142|ref|NP_050252.1|origin_binding_protein U73 922.1 

FLHEKIFAV >gi|9633143|ref|NP_050253.1|helicase/primase_complex U74 192.5 

MLYEHIHLL >gi|9633143|ref|NP_050253.1|helicase/primase_complex U74 1061 

WLLVRDLHV >gi|9633143|ref|NP_050253.1|helicase/primase_complex U74 579.8 

VLFPVLSPV >gi|9633144|ref|NP_050254.1|hypothetical_protein_HhV6Bgp080 U75 320.6 

SLIKFLLNL >gi|9633145|ref|NP_050255.1|putative_viron_protein U76 4481 

FIQEITPSI >gi|9633145|ref|NP_050255.1|putative_viron_protein U76 220 

LIVDKVASL >gi|9633146|ref|NP_050256.1|Helicase/primase_complex U77 798.8 

ILRHILHTV >gi|9633146|ref|NP_050256.1|Helicase/primase_complex U77 601.6 

KLKERLDYV >gi|9633149|ref|NP_050259.1|DNA_replication U79 354.4 

VLYFRYFIV >gi|9633081|ref|NP_050189.1|hypothetical_protein_HhV6Bgp012 U8 292.6 

SLDDVERFV >gi|9633081|ref|NP_050189.1|hypothetical_protein_HhV6Bgp012 U8 545.5 

LLLNSIFTV >gi|9633150|ref|NP_050260.1|Uracyl-DNA_glycosylase U81 303.7 

YLPERITYV >gi|9633151|ref|NP_050261.1|Glycoprotein_L U82 71.4 

KLDDCIAAV >gi|9633151|ref|NP_050261.1|Glycoprotein_L U82 693.6 

SLELGLSKL >gi|9633152|ref|NP_050262.1|Intercrine_cytokine U83 6383 

ILACLIVLI >gi|9633157|ref|NP_050267.1|probable_membrane_glycoprotein U91 7637 

VLLCENKWV >gi|9633160|ref|NP_050270.1|immediate-early_protein_IE2 U95 973.2 

*NB denotes nonbinding peptide 
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Table A2.2 Summary of HLA-A2 binding data 
Binding scale (nM) Relative binding Number of 

peptides 
Mean IC50 
(nM) 

<=50 High 0  
>50 <=1000 Medium 45 336 
>1000 <=7500 Low 10 2778 
>7500 Borderline 1 7637 

 
 
Table A2.3. Summary of responses and IC50 values 

Parameter Mean IC50 (nM) 
Positive response 979 
Negative response 265 
Observed in >50% of donors 434 
Observed in >75% of donors 302 
Observed in >85% of donors 110 

 
 
Table A2.4. Summary of early and late gene-derived epitope responses  

 E* L* 
Number of peptides tested 12 35 
Positive response 10 31 
Negative response 2 4 
Observed in >50% of donors 5 11 
Observed in >75% of donors 1 5 
Observed in >85% of donors 0 1 

*E and L denote whether peptides were derived from early or late genes. 
 

 

Discussion 

 

An understanding of the precise mechanism(s) by which HHV-6 evades detection 

by the immune system will aid in development of targeted therapies to treat HHV-

6 infection. Here, we have evaluated putative HLA-A2-restricted epitopes derived 

from the HHV-6B genome. We have assessed epitope binding capacity, performed 

in vitro epitope mapping studies, and generated tetramers for epitopes that 

reproducibly elicited substantial responses. Results from these studies may aid in 

design of therapies to treat HHV-6 reactivation. 
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Materials and Methods 

 

HLA-A2 binding assay 

Binding was assessed using epitope-linked b2m (ELBM) as previously described 

(Appendix I). Briefly, 0.25 µM ELBM was incubated with 0.01 unit/µl thrombin 

(MP Biomedicals, Santa Ana, CA) and 25 nM Alexa488-RT(cys), and competitor 

peptides (synthesized by 21st Century Biochemicals, Marlborough, MA) were 

diluted two-fold, from 2 µM to 31.25 nM, and added to determine IC50 values. 

Following 16 h incubation at room temperature (RT), fluorescence polarization 

(FP) was measured as millipolarization (mP) units in a VICTOR X5 plate reader 

(Perkin Elmer, Waltham, MA) at 495 excitation and 520 emission. 

 

In vitro generation of DCs 

The CD14 Microbead Kit (Miltenyi Biotec, Auburn, CA) was used to isolate 

CD14+ monocytes from PBMCs of healthy donors according to the manufacturer’s 

instructions. 2x106 monocytes/well in 12-well plates were cultured at 37° C 5% 

CO2 in RPMI 1640 (Thermo Fisher Scientific, Waltham, MA) containing Glutamax 

and 1% penicillin-streptomycin (Thermo Fisher Scientific) and 10% FBS, as well 

as 1000 U/ml recombinant human GM-CSF and 40 ng/ml recombinant human IL-

4 (both from Peprotech, Rocky Hill, NJ). On day 3, additional medium was added, 

and on day 5, nonadherent cells were collected, centrifuged, and stimulated for 24h 

in medium containing 100 ng/ml LPS (Sigma Aldrich, St. Louis, MO). 
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Generation of CD8 T cell lines 

CD8+ T cells were isolated from PBMCs of HLA-A2-positive donors using the 

CD8+ T cell Isolation Kit (Miltenyi Biotec, Auburn, CA). DCs generated as above 

were pulsed with peptide pools (5 µg/ml each peptide), and 106 CD8 T cells and 

2.5x105 peptide-pulsed DCs were co-cultured at 37° C 5% CO2 in 24-well plates in 

AIM-V medium (Thermo Fisher Scientific) containing 1% Glutamax, 1% 

penicillin-streptomycin, 50 uM 2-ME (Sigma-Adrich), 10% FBS, and 50 U/ml 

recombinant human IL-2 and 10 ng/ml recombinant human IL-7 (both from 

Peprotech). After 7 days, 2x105 peptide-pulsed and irradiated T2-A2 cells (ATCC, 

Manassas, VA) were added to cultures, and this was repeated on days 14 and 21. 

ELISPOT assays for human IFN-g were performed using 5x104 peptide-pulsed T2-

A2 cells with 105 CD8 T cells per well according to the manufacturer’s instructions 

(BD Biosciences, San Jose, CA). 

 

Statistical analysis of T cell responses 

The DFR server (http://www.scharp.org/zoe/runDFR/) was used to perform 

statistical analysis of data obtained in ELISPOT assays, using the distribution-free 

resampling method475. The algorithm reports statistical significances at “1X” 

(onefold difference between background and experimental wells) and “2X” 

(twofold difference between background and experimental means). In addition, we 

also assessed responses that fit the “2X” criteria with delta responses demonstrating 

>25 specific spots. Responses to these peptides are denoted “strong positives”. 
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Tetramer staining 

HLA-A2 monomers were generated as previously described476. Tetramerization 

was performed using fluorescently-labeled streptavidin (Prozyme, Hayward, CA) 

at 10-minute intervals. CD8 T cell lines raised against peptide pools as above were 

blocked with 10 µg/ml human IgG (Sigma Aldrich), followed by staining with anti-

human CD8 and anti-human CD4 (both from BD Biosciences), as well as with 

Live/Dead Violet (Thermo Fisher Scientific). Cells were then incubated with 

tetramers (200 nM of monomer) at 4° C for 1 h. Cell acquisition was performed on 

an LSR II flow cytometer (Becton Dickinson, Franklin Lakes, NJ), and data were 

analyzed using FlowJo version 10.5.3 software (Tree Star, Ashland, OR).  
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