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Abstract  

Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation 

of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a non-classical 

MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing 

antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II 

epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes 

have been contradictory. To understand how DO modulates MHC-II antigen presentation, we 

characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient 

and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry 

approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset 

of peptides presented only when DO was expressed. Antigen-presenting cells express another non-

classical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of 

less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented 

uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM 

editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses 

against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in 

the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific 

and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, to enhance self-tolerance 

to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during 

an immune response. 
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Introduction 

Antigen presentation by MHC-II molecules is required for development of CD4 T cells and 

regulation of CD4-mediated cellular and humoral immune responses. The non-classical MHC-II molecule 

DO has been implicated in modulating immune responses to both self and foreign antigens. Mouse strains 

with inactive H2-Ob genes have increased neutralizing antibody responses to some persistent viruses (1), 

possibly related to increased ability of DO-deficient B cells to enter the germinal center (2), and HLA-DO 

variants in humans have been associated with resistance to HBV and HCV (1). DO knockout (DO-KO) 

mice also exhibit increased titers of autoantibodies, together somewhat paradoxically with decreased 

antibody responses to immunized protein antigens (3). DO expression is regulated differently from the 

coordinate regulation of other proteins involved in MHC-II antigen processing (4), with expression 

restricted to medullary thymic epithelial cells, immature dendritic cells (DCs), and mature B cells (5-8). 

DO expression is also downregulated following entry of B cells into the germinal center and following 

maturation of DCs (8-13), coinciding with the onset of inflammation. This pattern of expression suggests 

a potential role for DO in maintenance of T cell tolerance. Ectopic overexpression of DO in dendritic cells 

has been shown to prevent diabetes in NOD mice, consistent with this idea (14), and CD4 T cells from 

DO-KO mice show differential TCRBV usage, also indicating a potential role for DO in regulating T cell 

selection in the thymus (3, 15). 

Presumably, these effects of DO result from modulation of MHC-II antigen processing. DO is 

posited to regulate peptide loading onto classical MHC-II proteins through interaction with the MHC-II 

peptide-exchange factor DM (16), which is required for efficient MHC-II peptide exchange (17, 18) and 

which has been shown to control CD4 epitope selection (19-22). DO has been shown to act as a tight-

binding competitor of DM (23-25). The inhibition of DM by DO is pH-dependent, potentially restricting 

efficient antigen presentation to low pH late endosomal compartments (26-29). Several studies have 

shown that DO-KO murine and human cells have alterations in MHC-II antigen presentation (8, 9, 15, 28, 

30-32). However, in these studies, the effect of DO seems to vary with the epitope studied, with 
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presentation of particular peptides increased, decreased, or unchanged by expression of DO (15, 28, 30, 

31, 33). This variation is difficult to reconcile with the biochemical effect of DO as a competitive 

inhibitor of DM, and the fundamental question of how DO affects the overall spectrum of MHC-II bound 

peptides has remained unanswered.  

To definitively determine the role of DO in modulating the MHC-II peptidome, we used 

CRISPR/Cas9 gene editing to target DO in a human lymphoblastoid cell line and characterized MHC-II 

bound peptides from DO-deficient and DO–sufficient cells by quantitative mass spectrometry. We found 

that DO regulates the diversity of MHC-II antigen expression, by increasing the number of different 

peptides presented without changing the overall MHC-II expression level. Many low abundance peptides 

were presented only in the presence of DO. We confirmed these observations using a mouse model of DO 

deletion and determined through immunization experiments that the immune system is sensitive to these 

DO-dependent alterations in the peptide repertoire. This work defines a role for DO in mediating 

qualitative and quantitative changes in the MHC-II peptidome and provides a mechanistic basis for the 

biological consequences of DO expression. 

 

Experimental Procedures 

Generation of DO-knockout (DO-KO) and WT clones 

Single-guide RNAs (sgRNAs) designed to target exon 1 of HLA-DO (sgRNA-1: 5’ 

gACTAGCAGAGCCACCACCCA 3’ and sgRNA-2: 5’ GCTAGTGAATCTGACCCGAC 3’) using the 

CRISPR Design Tool (http://tools.genome-engineering.org) (34) were cloned into the pX330-U6-

Chimeric_BB-CBh-hSpCas9 plasmid, which was a gift from Feng Zhang (35) (Plasmid #42230, 

Addgene, Cambridge, MA), and which was modified by insertion of a GFP sequence. The px330-GFP 

vector was then transfected into the human lymphoblastoid HLA-DR1 homozygous LG-2 cell line (36, 

37) using the Amaxa Nucleofector Kit V (Lonza, Walkersville, MD) according to the manufacturer’s 

instructions, with protocol Y-001 and the Nucleofector II system (Lonza). Transfected cells were sorted 
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for GFP expression on a FACSAria (Becton Dickinson, Franklin Lakes, NJ) and then grown at 37C, 5% 

CO2 in RPMI supplemented with 10% fetal bovine serum, 100 IU/ml/100 ug/ml penicillin/streptomycin 

(Corning, Corning, NY), and 2 mM Glutamax (Thermo Fisher, Waltham, MA) for 1 week, followed by 

limiting dilution to isolate single-cell clones. PCR with primers specific for HLA-DO was performed 

using DNA isolated from expanded clonal populations, and amplicons were then gel-purified and cloned 

into the pCR2.1 vector using the TOPO-TA cloning kit (Thermo Fisher Scientific, Waltham, MA). DNA 

isolated from mini-preps of bacterial clones was sequenced to determine whether indels were present in 

exon 1 of HLA-DO. Clones were cultured in the medium described above. 

 

Western blot 

Total protein was isolated from a negative control T cell line (SUP-T1, [ATCC, Manassas, VA]), from the 

parental LG-2 line, and from the WT, DO-KO-1, and DO-KO-2 clones by cell lysis in cold RIPA buffer 

(50 mM Tris-HCl, 150 mM NaCl, 1% [v/v] Triton X-100, 1% [w/v] sodium deoxycholate, 0.1% [w/v] 

SDS, pH 7.4) containing protease inhibitor (Roche, Indianapolis, IN). Protein was quantified using a 

bicinchoninic acid protein assay (Thermo Fisher Scientific), and 40 g of each lysate was loaded onto a 

Novex 12% Tris-Glycine gel (Thermo Fisher Scientific) and then transferred to a PVDF membrane. 

Membranes were blocked overnight with 10% nonfat dry milk, probed for HLA-DO (DOB.L1, Santa 

Cruz Biotechnology, Santa Cruz, CA), and then re-probed with anti-GAPDH (Millipore, Burlington, MA) 

to confirm equal protein loading. 

 

Flow cytometric analysis 

DO-KO and WT clones were blocked with 10 g/ml human IgG (Sigma Aldrich, St. Louis, MO), and 

then stained for surface expression of HLA-DR (Thermo Fisher Scientific). Co-staining of viable cells 

was performed using the Live/Dead Fixable Dead Cell Stain Kit (Thermo Fisher Scientific) for all 

antibodies. For HLA-DM staining, cells were permeabilized using the BD Cytofix/Cytoperm kit 
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according to the manufacturer’s instructions (BD Biosciences, San Jose, CA) and then similarly blocked 

using human IgG. Permeabilized cells were incubated with PE-conjugated MaPDM.1 (Santa Cruz 

Biotechnology) to evaluate DM expression. Isotype controls were used for all antibodies. To assess 

presentation of the CLIP and HLA-A2(104-117) (A2) epitopes, LG-2 clones were incubated with the 

CerCLIP (FITC-conjugated, BD Biosciences) or UL-5A1 (38, 39) (followed by incubation with FITC-

conjugated anti-mouse IgG F(ab’)2 [Thermo Fisher Scientific]) antibodies together with HLA-DR to 

calculate ratios of expression for mean fluorescence intensity (MFI) of epitopes to HLA-DR in order to 

account for any small differences in DR expression. Antibodies used in additional experiments (details 

below) were anti-mouse CD4 (RM4-5), CD8α (53-6.7), CD25 (PC61), CD69 (H1.2F3), and I-Ab (AF6-

120.1) (BD Biosciences), as well as anti-mouse CD11b (M1/70) and CD43 (S11) (BioLegend, Dedham, 

MA) and CD45R/B220 (RA3-6B2) (Thermo Fisher Scientific). Prior to staining, mouse cells were 

blocked with 50 g/ml anti-mouse CD16/CD32 (2.4G2, BioXCell, West Lebanon, NH). Cells were 

acquired on an LSR II flow cytometer (Becton Dickinson) and analyzed using FlowJo version 9.8.5 

software (Tree Star, Ashland, OR).  

 

RNAseq 

RNA isolation, library preparation, and sequencing were performed at the Broad Institute (Cambridge, 

MA). Briefly, RNA was isolated using a Trizol-based method followed by purification using silica spin 

columns. Quantification of RNA was then performed using the Quant-iT RiboGreen RNA Assay Kit 

(Thermo Fisher Scientific), and RNA quality was measured as RNA Quality Score via Caliper GX 

(PerkinElmer, Waltham, MA). 200 ng of total RNA was used for library preparation, which was 

performed with an automated variation of the Illumina TruSeq Stranded mRNA Sample Preparation Kit 

(Illumina, San Diego, CA) according to the manufacturer’s instructions, with indexed adapters designed 

by the Broad Institute. Pooled libraries were normalized to 2 nM and then denatured with 0.1 N NaOH. 

Flowcell cluster amplification and sequencing were performed according to the manufacturer’s 
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instructions (Illumina) using either the HiSeq 2000 or HiSeq 2500 sequencing platform, with a 101bp 

paired-end read. The Broad Picard Pipeline was used for data de-multiplexing and data aggregation.  

For analysis of sequencing data, filtering of rRNA and low-quality reads was first performed. Transcripts 

were then quantified by RSEM v1.2.7 (40) with Bowtie 2 (41) using the hg19(GRCh37) assembly. 

RefSeq annotations were downloaded on 2/5/17 from the UCSC genome browser (42, 43). Functional 

annotation clustering was performed using DAVID 6.8 (44, 45). A correlation analysis was also 

performed using RNAseq and mass spectrometric data (below) to evaluate whether clonal or CRISPR off-

target effects could account for presentation of fewer peptides in DO-KO. The Pearson correlation 

coefficients, when comparing intensities of peptides found with greater intensity in WT or found only in 

WT vs. the fold-change expression of corresponding genes downregulated in DO-KO, were -0.012 and -

0.102 for DO-KO-1 and DO-KO-2 compared to WT, indicating that reduced peptide numbers in the 

absence of DO were not due to changes in gene expression. 

 

Experimental design and statistical rationale  

WT, DO-KO-1 and DO-KO-2 human LG-2 clones were used to determine the qualitative and quantitative 

differences in peptide diversity modulated by HLA-DO. LG-2 cells express the MHC-II proteins HLA-

DR1 (DRA1*01:01,DRB1*01:01), HLA-DQ5 (DQA1*01:01,DQB1*05:01), and HLA-DP4 

(DQA1*01:03,DQB1*04:01) at an approximate 100:17:2 ratio (37); only HLA-DR1 was analyzed in the 

present study. HLA-DR1-bound peptides were isolated from ~108 cells using immunoaffinity purification 

and were further identified using LC-MS/MS. For DO-KO-1, five biological replicates from independent 

cell cultures with paired WT replicates were analyzed. For DO-KO-2, three biological replicates from 

independent cell cultures with paired WT replicates were analyzed. To evaluate the role of the murine 

HLA-DO ortholog H2-O, we used splenic B cells from littermate H2-O-/- and WT C57BL/6 mice. These 

mice express I-Ab as their only MHC-II protein. Three biological replicates of paired WT and DO-KO 

samples from ~10 mice/replicate were used, totaling 3x108 cells/replicate. For both human and mouse 

samples, pairs of WT and DO-KO samples were processed in parallel, with each biological replicate 
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tested in three technical replicates. Only peptides identified with 1% FDR were considered. For 

systematic comparison across the peptides between different samples using their MS1 intensities for 

volcano plot analysis, we applied a multiple comparison correction using the original Benjamini-

Hochberg method to calculate p-values. The Benjamini, Krieger and Yekutieli method was used for 

comparison of differential source protein localization analysis in WT and DO-KO samples using GO 

terms. We used a paired parametric t-test to calculate p-values for differences in number of peptides, 

cores and diversity measures between WT and DO-KO. Also, paired nonparametric t-tests, unpaired 

nonparametric Mann-Whitney t-tests, and specific t-tests were used for different analyses, which are 

indicated in the figure legends of each plot. Prism (version 7.03, GraphPad, San Diego, CA) was used for 

statistical analysis and graphing data. R version 3.3.2 was used for histogram and kernel density plots. 

 

Isolation of HLA-DR1-bound peptides 

Membrane solubilized fractions isolated from ~108 cells of each WT and DO-KO LG-2 clone were used 

for elution experiments. Five independent samples each for WT and DO-KO from separate cell cultures 

were analyzed, with five sets of WT and DO-KO pairs processed in parallel. Cells were suspended in ice-

cold hypotonic buffer (10 mM Tris-HCl, pH 8.0, containing protease inhibitors). Repeated (4-5) freeze-

thaw cycles were used for cell disruption. Cellular debris was removed by centrifuging the lysate at 4,000 

x g for 5 min at 4C. The supernatant was collected and further centrifuged at 100,000 x g for 1 h at 4C 

to pellet the membrane fraction. The membrane pellet was solubilized in ice-cold 50 mM Tris-HCl, 150 

mM NaCl, pH 8.0, containing protease inhibitors and 5% β-octylglucoside, and then mixed slowly 

overnight at 4C. Supernatant containing the solubilized membrane was recovered by centrifuging the 

lysate at 100,000 x g for 1 h at 4C. 2.5 µg of DR1-GAG or DR1-HA complex was added to the 

membrane fraction as controls. An immunoaffinity column of protein A agarose-LB3.1 antibody, 

prepared as previously described (37), was used for isolation of DR1-bound peptide complexes. The 

column was equilibrated with buffer (50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing protease 
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inhibitors) for 2 h. The membrane fraction was first equilibrated with protein A agarose beads for 1 h at 

4C and then allowed to mix slowly to prevent nonspecific binding of proteins to beads. The precleared 

supernatant was incubated with LB3.1 antibody conjugated to the protein A agarose affinity column for 1 

h at 4C and allowed to mix slowly. The column was washed with several buffers in succession as 

follows: 1) 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing protease inhibitors and 5% β-

octylglucoside (5 times the bead volume); 2) 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing 

protease inhibitors and 1% β-octylglucoside (10 times the bead volume); 3) 50 mM Tris-HCl, 150 mM 

NaCl, pH 8.0, containing protease inhibitors (30 times the bead volume); 4) 50 mM Tris-HCl, 300 mM 

NaCl, pH 8.0, containing protease inhibitors (10 times the bead volume); 5) 1X PBS (30 times the bead 

volume); and 6) HPLC water (100 times the bead volume). Bound complexes were acid-eluted, and 

MHC-peptide concentration from the membrane fraction was measured by ELISA. Peptides were further 

separated using a Vydac C4 macrospin column (Hichrom, Berkshire, UK). Firstly, the mixture of DR1 

and peptides were bound to the column, and after subsequent washes with 0.1% TFA, the peptides were 

eluted using 30% acetonitrile in 0.1% TFA. Eluted peptides were lyophilized using a SpeedVac and were 

resuspended in 25 μl of 5% acetonitrile and 0.1% TFA. This fraction was further divided into 3 different 

portions that were considered as technical replicates of the same sample. 2 pmols of ADH digest was 

added, and a total of 3/25 μl was injected, so that the amount of ADH per injection was 240 fmols. Each 

fraction was analyzed using a Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo 

Fisher Scientific). 3 samples from clone DO-KO-2, 3 additional WT clone samples, and a single sample 

of the parental LG-2 line were analyzed similarly.  

 

Liquid chromatography – mass spectrometry (MS) 

For LC/MS/MS analysis, peptide extracts were reconstituted in 25 µL 5% acetonitrile containing 0.1% 

(v/v) trifluoroacetic acid and separated on a nanoACQUITY (Waters Corporation, Milford, MA) UPLC 

with technical triplicate injections. In brief, a 3.0 µL injection was loaded in 5% acetonitrile containing 
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0.1% formic acid at 4.0 µL/min for 4.0 min onto a 100 µm I.D. fused-silica pre-column packed with 2 cm 

of 5 µm (200Å) Magic C18AQ (Bruker-Michrom, Auburn, CA) and eluted using a gradient at 300 

nL/min onto a 75 µm I.D. analytical column packed with 25 cm of 3 µm (100Å) Magic C18AQ particles 

to a gravity-pulled tip. The solvents were A) water (0.1% formic acid); and B) acetonitrile (0.1% formic 

acid). A linear gradient was developed from 5% solvent A to 35% solvent B in 90 minutes. Ions were 

introduced by positive electrospray ionization via liquid junction into a Q Exactive hybrid mass 

spectrometer (Thermo Fisher Scientific). Mass spectra were acquired over m/z 300-1750 at 70,000 

resolution (m/z-200), and data-dependent acquisition selected the top 10 most abundant precursor ions in 

each scan for tandem mass spectrometry by HCD fragmentation using an isolation width of 1.6 Da, 

collision energy of 27, and a resolution of 17,500.  

 

Peptide identification  

Raw data files were peak processed with Proteome Discoverer (version 2.1, Thermo Fisher Scientific) 

prior to database searching with Mascot Server (version 2.5, Matrix Science, Boston, MA) against the 

combined database of UniProt_Human, UniProt_Bovine and UniProt_EBV databases, with 115,105 

entries downloaded on 8/5/16. (The LG-2 cell line carries the Epstein-Barr virus genome and was cultured 

in medium containing fetal bovine serum.) Search parameters included “no enzyme” specificity to detect 

peptides generated by cleavage after any residue. The variable modifications of oxidized methionine and 

pyroglutamic acid for N-terminal glutamine were considered. The mass tolerances were 10 ppm for the 

precursor and 0.05Da for the fragments. Search results were then loaded into the Scaffold Viewer 

(Proteome Software, Inc., Portland, OR) for peptide/protein validation and label-free quantitation. 

Scaffold assigns probabilities using PeptideProphet or the LDFR algorithm for peptide identification and 

the ProteinProphet algorithm for protein identification, allowing the peptide and protein identification to 

be scored on the level of probability. An FDR of 1% was adjusted for reliable identification of peptides. 

Spectra files for all samples are shown in Supplementary Tables 7-9. Peptide lists were filtered to remove 

contaminants such as keratins and IgG-derived peptides. Core epitopes were identified for the HLA-
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DRB1*0101 allele using the NetMHCIIpan3.0 server; the top scoring 9-residue sequence within each 

sequenced peptide was used as the core epitope (46). Peptides with a length of less than 9 amino acids 

were excluded from the core epitope analysis. A similar analysis using a different prediction algorithm, 

P9 (47), identified essentially the same cores (~92% identical).  

 

Label-free quantitation 

Label-free relative quantitation of all peptides eluted from WT and DO-KO LG-2 cells was performed 

using precursor intensity analysis in Scaffold, Scaffold Q+/Q+S (48-50). Scaffold uses the precursor 

intensity information from the Thermo Proteome Discoverer. The software normalizes total precursor 

intensity values across the samples and calculates fold change or log2 normalized intensity across the 

samples while considering different statistical parameters like t-test, ANOVA and coefficient of variance. 

The log2 normalized intensity values were converted to intensities for subsequent analyses. Triplicate 

technical replicates were run for each sample. Only peptides that were observed in at least two of three 

technical replicates in a particular sample were used for intensity analysis, with missing values imputed as 

the minimum intensity observed in that sample, and a single average value used to represent the three 

technical replicates. For analysis of core epitope intensities, the intensity values for all peptides sharing 

the same core epitope were summed within each technical replicate, using an approach similar to 

PLAtEAU (51), except that NetMHCIIpan rather than overlap analysis was used to identify core epitopes. 

Missing values were imputed and technical replicates were averaged for core epitopes as described above 

for peptides. For calculation of diversity statistics, rank abundance plots, density histograms, and volcano 

plots, only core epitopes present in all of the biological replicates were considered. To determine 

fractional intensities in the rank abundance plot, the intensity for each core was divided by the total 

intensity for all core epitopes present in that sample. To determine average fractional intensities in the 

density plot, an average of all biological replicates was calculated. The datasets used for intensity analysis 

are shown in Supplementary Tables 10-12. For correlation analysis, SIEVE software (48, 52) was used, 

with frame parameters adjusted to m/z range of 300-1700, frame time width of 1.5 min, m/z width of 
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10ppm, and retention time from 10-80 min. The intensity analysis shown for pairs of biological replicates 

in Supplementary Fig. 1A-B included 10,000 frames. 

 

Diversity calculations 

Shannon’s diversity index (H) and Simpson’s diversity index (D) were calculated to analyze the diversity 

of WT and DO-KO peptidomes. These indices consider not only the number of species (peptides) but also 

how evenly peptide abundances are distributed in the entire sample. Diversity calculations were 

performed only for peptides identified in all biological samples as described above. Shannon’s entropy 

(H) was calculated as:  

𝐻 = − ∑ 𝑝𝑖 𝑙𝑛(𝑝𝑖)
𝑅

𝑖=1
 

where R is the number of peptides and pi is the proportion of the total ion intensity represented by peptide 

i. The higher the entropy value, the more diverse the sample. Simpson’s diversity index was calculated as: 

D = ∑ 𝑝𝑖
2

𝑅

𝑖=1
 

Simpson’s reciprocal diversity index was calculated as 1/D, with higher values representing more diverse 

samples. Chao2 (for replicated incidence data) for peptides was calculated as: 

SChao2 = Sobs+(Q1
2/2Q2) 

where Sobs is the number of observed species, Q1 is the number of singletons (species occurring once), 

and Q2 is the number of doubletons (species occurring twice).  

 

Absolute quantification using stable isotope-labeled peptides 

Nine peptides were selected for intensity validation by referencing a volcano plot analysis of differences 

in intensities of the WT and DO-KO-1 vs. their significance values adjusted using Benjamini-Hochberg’s 
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correction: one peptide that was observed with higher core epitope intensity in WT vs. DO-KO-1 samples 

(WT>DO-KO), two peptides that were observed at higher core epitope intensity in DO-KO-1 vs. WT 

samples, (WT<DO-KO), and six peptides that were observed with relatively equal core epitope intensities 

in the two samples (WT≈DO-KO) (Figure 5D, Supplementary Table 13). We selected core epitopes that 

were observed in each of the five biological replicates, and for differentially expressed core epitopes, that 

showed a statistically significant difference of 2-fold or greater after adjustment for multiple comparisons. 

For each core epitope, we selected the most abundant peptide containing that epitope for synthesis and 

absolute quantification studies. Peptides with 13C and 15N labels incorporated at specific residues were 

synthesized by 21st Century Biochemicals (Marlborough, MA) and spiked into new samples of WT and 

DO-KO-1 as internal controls to quantify the chemically-identical unlabeled (light) peptides present in 

these samples. The purity and quantification of these peptides were confirmed using amino acid analysis. 

DR1-bound peptides were eluted from WT or DO-KO-1 LG-2 cells as described in the previous section, 

and a mixture of isotope-labeled peptides at 60 fmols/injection was spiked into the sample. The data were 

analyzed as 3 technical replicates. Quantitation of the selected peptides was performed using Skyline 

software (V3.7, University of Washington, Seattle, WA) by generating extracted ion chromatograms of 

the MS1 signals for the M, M+1, and M+2 isotopes of each precursor. For most peptides, both +3 and +4 

charge state ions were observed; intensities of these were summed for each peptide. Summed areas were 

then compared to the corresponding heavy peptide areas to determine absolute amount of peptide. 

 

Soluble recombinant HLA-DR1 and HLA-DM  

Soluble extracellular domains of recombinant HLA-DR1 (DR1) (DRA*0101/DRB1*010101) and DM 

(DMA*0101/DMB*0101) for binding affinity and DM sensitivity measurements were expressed in 

Drosophila S2 cells and purified by immunoaffinity chromatography followed by Superdex200 (GE 

Healthcare, Chicago, IL) size exclusion chromatography as previously described (18, 53). 

 

Binding affinity and DM sensitivity measurements 
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For three abundant self-peptides, DM sensitivity has been previously characterized: CLIP, the invariant 

chain chaperone fragment efficiently removed by DM (18, 54), DR52-68, the human ortholog of the YAe 

epitope (55) known to be highly sensitive to DM exchange (56), and the transplantation alloepitope A2104-

117 (39) previously demonstrated to be highly resistant to DM-mediated exchange (38). For these peptides, 

we summed the intensities of all peptides sharing the respective core epitopes and compared summed 

intensities between replicate samples of WT and DO-KO-1 cells. For a broader analysis, we selected 38 

peptides comprising the 9 peptides used for stable isotope quantitation, 2 additional peptides with greater 

core epitope intensity in WT peptidomes than in DO-KO-1 as indicated by volcano plot analysis 

(WT>DO-KO), 11 with average core epitope intensity similar in WT and DO-KO-1 samples as indicated 

by volcano plot analysis (WT≈DO-KO), 15 core epitopes identified exclusively in WT, and one core 

epitope identified exclusively in DO-KO-1 (Figure 5D and Supplementary Table 14). For each core 

epitope, we selected the most abundant peptide containing that epitope for synthesis and binding analysis. 

A fluorescence polarization (FP) assay was used to measure the IC50 of each selected peptide, using N-

terminally-acetylated influenza hemagglutinin HA306–318 (Ac-PRFVKQNTLRLAT) labeled with Alexa 

Fluor 488 tetrafluorophenyl ester (Invitrogen, Carlsbad, CA) via the primary amine at K5 as probe peptide 

as previously described (57). The DR1 concentration used was selected by titrating DR1 against fixed 

labeled peptide concentration (25 nM) and choosing the concentration of DR1 that showed ~50% 

maximum binding. For calculating IC50 values, 100 nM DR1 was incubated with 25 nM Alexa488-

labeled HA306–318 probe peptide, in combination with a serial dilution of test peptides, beginning at 10 μM 

followed by 2-fold dilutions. The reaction mixture was incubated at 37C. The capacity of each test 

peptide to compete for binding of probe peptide was measured by FP after 72 h at 37C. FP values were 

converted to fraction bound by calculating [(FP_sample − FP_free) / (FP_no_comp − FP_free)], where 

FP_sample represents the FP value in the presence of test peptide; FP_free represents the value for free 

Alexa488-conjugated HA306–318; and FP_no_comp represents values in the absence of competitor peptide. 

We plotted fraction bound versus concentration of test peptide and fit the curve to the equation y = 1 / (1 
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+ [pep] / IC50), where [pep] is the concentration of test peptide, y is the fraction of probe peptide bound at 

that concentration of test peptide, and IC50 is the 50% inhibitory concentration of the test peptide. To 

measure DM sensitivity, an IC50,DM was obtained by including 500 nM DM in the binding competition 

assay, and ΔIC50 was calculated as (IC50,DM − IC50) as described (58). DM sensitivity was calculated as 

ΔIC50 / [DM], where [DM] is the concentration of DM.  

 

Whole cell proteomics 

For in-gel digestion and LC-MS/MS analysis, total protein was isolated as above for western blot. 50 µg 

of whole cell lysate was run on an SDS-PAGE system to separate proteins from lower molecular weight 

contaminants, and the entire protein region of the gel was then excised and subjected to in-gel trypsin 

digestion after reduction with DTT and alkylation with IAA. Peptides eluted from the gel were 

lyophilized and re-suspended in 100 µL of 5% acetonitrile (0.1% [v/v] TFA) with 1 pmol ADH digest. An 

injection of 1.5 µL was loaded by a Waters nanoACQUITY UPLC in 5% acetonitrile (0.1% formic acid) 

at 4.0 µL/min for 4.0 min onto a 100 µm I.D. fused-silica pre-column packed with 2 cm of 5 µm (200Å) 

Magic C18AQ (Bruker-Michrom). Peptides were eluted at 300 nL/min from a 75 µm I.D. gravity-pulled 

analytical column packed with 25 cm of 3 µm (100Å) Magic C18AQ particles using a linear gradient 

from 5-35% of mobile phase B (acetonitrile + 0.1% formic acid) in mobile phase A (water + 0.1% formic 

acid) for 120 minutes. Ions were introduced by positive electrospray ionization via liquid junction at 

1.5kV into a Thermo Scientific Q Exactive hybrid mass spectrometer. Mass spectra were acquired over 

m/z 300-1750 at 70,000 resolution (m/z 200) with an AGC target of 1e6, and data-dependent acquisition 

selected the top 10 most abundant precursor ions for tandem mass spectrometry by HCD fragmentation 

using an isolation width of 1.6 Da, max fill time of 110ms, and AGC target of 1e5. Peptides were 

fragmented by a normalized collisional energy of 27, and fragment spectra acquired at a resolution of 

17,500 (m/z 200). Raw data files were peak-processed with Proteome Discoverer (version 1.4, Thermo 

Scientific) followed by identification using Mascot Server (version 2.5, Matrix Science) against an 

Epstein-Barr virus (Swiss-Prot), Human (Swiss-Prot), Bovine (UniProt) FASTA file (downloaded 
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8/2016). Search parameters included Trypsin/P specificity, up to 2 missed cleavages, a fixed modification 

of carbamidomethyl cysteine, and variable modifications of oxidized methionine, pyroglutamic acid for 

Q, and N-terminal acetylation. Assignments were made using a 10 ppm mass tolerance for the precursor 

and 0.05 Da mass tolerance for the fragments. All non-filtered search results were processed by Scaffold 

(version 4.4.4, Proteome Software, Inc.) utilizing the Trans-Proteomic Pipeline (Institute for Systems 

Biology) with a 0.96% false-discovery rate.  

 

Mice 

H2-O-deficient mice were provided by Dr. Xinjian Chen at the University of Utah School of Medicine, 

following backcrossing to C57BL/6 mice for 10 generations. H2-O-/- mice were bred at the University of 

Massachusetts Medical School with C57BL/6 mice obtained from Jackson Laboratory (Bar Harbor, ME), 

and mice heterozygous for H2-O-/- were bred to obtain H2-O-/- and WT littermate controls for B cell 

isolation and immunization experiments. Mice were cared for and used in accordance with institutional 

guidelines. 

 

Isolation of B cells from H2-O-deficient and WT mice 

Spleens were isolated from H2-O-deficient and WT littermate mice, dissociated into single-cell 

suspensions, and splenic B cells were evaluated for I-Ab expression by first gating on the B220+CD43-

CD11b- population and performing flow cytometric analysis as above. To isolate mature B cells from the 

splenocyte population, CD43- and CD11b-expressing cells were depleted using biotinylated anti-mouse 

CD43 and CD11b (BioLegend) in conjunction with the EasySep Mouse Streptavidin RapidSpheres 

Isolation Kit (Stem Cell Technologies, Cambridge, MA) according to the manufacturer’s instructions. 

Purity post-isolation was determined by FACS to be >90% for each sample, with an average purity of 

94±2.6%. 
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Isolation and characterization of I-Ab-bound peptides  

Mouse B cells (~3x108) were solubilized in 50 mM Tris-HCl, 150 mM NaCl, pH 8.0, containing protease 

inhibitors and 5% β-octylglucoside and were processed as for LG-2 membrane fractions described above, 

except that whole cell lysates instead of solubilized membrane fractions were used, before loading on an 

affinity column of I-Ab-specific mAb M5114 coupled to CNBr-activated Sepharose, with elution and 

analysis as described above for isolation of HLA-DR1-bound peptides. Peptide sequences were identified 

as described above except that the UniProt Mouse database which was downloaded on 10/7/16 with 

57,984 entries.  

 

Mouse immunization 

6-8-week-old H2-O-deficient and WT littermate mice were immunized i.p. with 4x107 irradiated (3000 

rads) age- and sex-matched splenocytes from WT or H2-O-deficient mice. Spleens from recipient mice 

were harvested 15h later, and single-cell suspensions were prepared. Following red blood cell lysis, 

splenocytes were subjected to flow cytometric analysis as above, using anti-mouse CD4, CD8, CD25, and 

CD69 antibodies, by first gating on the CD4+CD8- population and then assessing expression of CD25 and 

CD69. Similar CD4 T cell activation results were observed at 3 days after immunization. 

 

Results 

Generation and validation of DO-KO and WT clones 

In order to study the effect of DO on the self-peptide repertoire, we used CRISPR/Cas9 gene editing to 

delete HLA-DO from the HLA-DR-expressing lymphoblastoid cell line LG-2. Following transfection of 

sgRNAs, cellular clones were isolated, expanded, and sequenced to evaluate DNA modifications at target 

sites in HLA-DO exon 1 (Fig. 1A). A clone (DO-KO-1) targeted by sgRNA-1 was shown to harbor 1-nt 

and 7-nt deletions, while a clone targeted by sgRNA-2 (DO-KO-2) showed 1-nt and 4-nt deletions. An 

additional clone (WT) – subjected to the identical transfection process with sgRNA-2 but without any 
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modifications in the HLA-DO locus on either chromosome – was selected as a control. Deletion of DO 

was confirmed by western blot in DO-KO cells (Fig. 1B). HLA-DM and HLA–DR expression was 

determined by FACS analysis to be consistent among all clones (Fig. 1C-E). To examine presentation of 

specific epitopes previously demonstrated to be DM-sensitive (CLIP) or DM-resistant (A2[104-117]), we 

used antibodies specific for their DR-bound forms (CerCLIP and UL-5A1, respectively). Expression of 

CerCLIP was decreased ~2-fold in DO-KO clones compared to WT, while expression of UL-5A1 was 

unchanged (Fig. 1F-G), consistent with the expected DO inhibition of DM editing activity.  

 

Reduced HLA-DR immunopeptidome presented by DO-KO as compared to WT cells 

To evaluate the influence of HLA-DO on the full spectrum of peptides presented by MHC-II, we 

characterized the immunopeptidomes presented by HLA-DR1 from DO-KO and WT cells. We purified 

HLA-DR1 from DO-KO-1 and WT clones by immunoaffinity, released peptides by acid treatment, and 

characterized the resultant peptide pools by HPLC/MS/MS using a high-sensitivity mass spectrometer 

with search parameters set to provide a conservative false discovery rate. Similarly to previous 

comparative immunopeptidome reports (59-61), we observed ~70% overlap between peptides identified 

in replicate WT or DO-KO samples (Supplementary Fig. 1A-B). Integrated parent ion peak areas were 

highly reproducible sample-to-sample (Supplementary Fig. 1C-D), while overlap of WT and DO-KO 

samples was comparatively lower (Supplementary Fig. 1A-D). A total of 6116 distinct peptide sequences 

were identified in 5 samples of WT cells (Fig. 2A, Supplementary Table 1), similar to the numbers of 

peptides identified in recent high-density immunopeptidome studies for other human and mouse MHC 

proteins (61). A smaller number of peptides, 5207, was identified in samples from DO-KO-1 cells 

processed in parallel (Fig. 2A, Supplementary Table 1). A broad distribution of peptide lengths centered 

around 15-16 residues was observed similarly for both WT and DO-KO-1 (Fig. 2A). As is typical for 

MHC-II peptidomes, many peptides were present as nested sets surrounding a common core epitope. This 

is illustrated in Fig. 2B for 11 peptides from the human transferrin receptor protein, found in both WT and 

DO-KO, which share the FLYQDSNWA core that binds to HLA-DR1 (Fig. 2B, Supplementary Table 4). 
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We used the MHC-II binding prediction resource NetMHCIIpan3.1 (62) to predict 9-residue HLA-DR1-

binding cores for each of the eluted peptides (Supplementary Table 4). Sequence preferences within these 

cores were essentially identical for WT and DO-KO-1 (Fig. 2C), as was the average number of nested 

peptides per core and their distribution (Fig. 2D). Thus, many features of the HLA-DR1 peptidome were 

not significantly altered as a result of DO. 

The most apparent difference between WT and DO-KO peptidomes was that in the absence of 

DO, fewer different peptide sequences were presented. For each of 5 replicate sets of WT and DO-KO-1 

cultures processed in parallel, or 3 replicate sets for WT and DO-KO-2, fewer peptides were isolated from 

DO-KO than from WT (Fig. 2E, Supplementary Fig. 2A, Supplementary Tables 1-2). In biodiversity 

analysis, the number of different species (“richness”) is considered to be a primary criterion of diversity, 

but other diversity measures are available that differentially weight the contribution of rare versus 

abundant species (63). The Chao2 index provides an extrapolated estimate of the total richness including 

rare species missed by undersampling (64). The Shannon diversity index considers the relative abundance 

of different species, with even distributions assigned higher diversity values than skewed distributions. 

Simpson’s entropy also considers relative abundance, preferentially weighting more abundant species 

(63). By all of these measures, diversity was significantly larger for the set of peptides eluted from WT as 

compared to DO-KO-1 (Fig. 2F-H) or DO-KO-2 (Supplementary Fig. 2B-D).  

 

Validation of immunopeptidome differences  

We investigated several potential explanations for the reduced number of peptides observed for DO-KO 

cells. We used whole-cell quantitative proteomics to determine whether deletion of DO had any effect on 

overall protein levels; no significant skewing was observed (Supplementary Fig. 3). We used RNASeq to 

evaluate potential alterations due to CRISPR/Cas9 off-targeting effects. Both the DO-KO clones and the 

WT clone exhibited some changes in gene expression compared to the parental LG-2 line, but there was 

no correlation of these differences with peptides differentially present in WT or DO-KO, and clustering of 

functional annotations for differentially-expressed genes did not indicate any systematic effect on antigen 
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presentation pathways. The reduced number of peptides in DO-KO potentially could be explained by 

elution of peptides from fewer MHC molecules, but the amounts of HLA-DR1 purified from WT and 

DO-KO cells were not different (Supplementary Fig. 4A), consistent with cell surface expression levels 

(Fig. 1). Peptides from recombinant peptide-MHC complexes spiked into cell lysates before 

immunoaffinity isolation as internal controls were recovered similarly for WT and DO-KO samples 

(Supplementary Fig. 4E), indicating that differential purification did not contribute significantly to the 

observed differences. For 3 pairs of samples, we removed a fraction of the eluted peptide mixture and 

measured the total amount of peptide by quantitative amino acid analysis. No significant differences in 

the total amount of peptidic material were observed between the samples (Supplementary Fig. 4B), 

indicating that the elution efficiency did not differ between WT and DO-KO. In addition, no significant 

differences in the distribution of amino acid residues was observed (Supplementary Fig. 4C), suggesting 

that the observed differences between WT and DO-KO were not due to factors such as overall 

hydrophobicity, which can limit the ability to volatilize and enter the spectrometer for analysis. Sample-

dependent factors that could suppress ionization did not contribute to differential detection of peptides in 

WT and DO-KO samples, as control peptides from yeast alcohol dehydrogenase spiked into each sample 

were detected with similar efficiency (Supplementary Fig. 4D). Thus, the reduced number of peptides 

identified for DO-KO as compared to WT samples represents an actual difference in the cellular peptide 

abundances and is not a consequence of experimental factors. 

 

Fewer epitopes presented in the absence of DO 

As each peptide in a nested set represents a different version of the same epitope, we asked whether DO 

deletion reduced the number of distinct epitopes presented as it did the number of individual peptides. We 

combined records for each peptide sharing the same core epitope, thus counting each set of related 

epitopes only once (Supplementary Table 4). DO-KO-1 and DO-KO-2 cells presented fewer core epitopes 

then did WT cells, with each DO-KO replicate having fewer cores than WT samples processed in parallel 

(Fig. 3A, Supplementary Fig. 2E, Supplementary Tables 4-5).  

 by guest on January 9, 2019
http://w

w
w

.m
cponline.org/

D
ow

nloaded from
 

http://www.mcponline.org/


 

 21 

To help understand the greater diversity of epitopes presented by WT as compared to DO-KO 

cells, we looked for core sequences present in both peptidomes, or unique to only WT or DO-KO. Of 704 

distinct core epitopes detected in each of the 5 WT replicates tested, 25 core sequences were not detected 

in any of the DO-KO-1 samples. By contrast, only one core epitope was present in each of the DO-KO-1 

samples but was not detected in any of WT samples (Fig. 3B). This same pattern held if we relaxed the 

identification criteria and considered peptides present in fewer replicates. For example, 37 additional core 

epitopes were present in 4 of the 5 WT replicate samples but were absent from any DO-KO-1 sample, 

whereas no additional core epitopes were detected in 4 of 5 DO-KO-1 samples and were absent from any 

WT sample. A similar pattern was observed for the second DO-deficient clone DO-KO-2, although in this 

case the test is less stringent due to the fact that only three replicates samples were analyzed 

(Supplementary Fig. 2F). Overall, the WT peptidome appears to contain many peptides that are absent 

from or present at much lower frequency in the DO-KO peptidome. 

One method to visualize diversity is by a rank abundance plot, in which the relative abundance of 

each species is plotted on a logarithmic scale against the species rank (i.e. 1 for the most abundant 

species, 2 for the next most abundant, etc.). This analysis shows a steeper profile for DO-KO-1 as 

compared to WT, with the WT curve showing a more even distribution and a long tail, indicating that 

many more low-abundance peptides are present in WT as compared to DO-KO-1 (Fig. 3C). Since the 

total molar amount of MHC (and peptide) present in WT and DO-KO samples was identical 

(Supplementary Fig. 4A), this would imply that the average fractional abundance of peptides in the DO-

KO-1 samples was higher than for WT, as the same total amount of peptide was represented by fewer 

different sequences. This can be seen in the density plot (histogram) of abundances of identified core 

epitopes, which shows a slight shift to higher abundances for the DO-KO peptides (Fig. 3D). Similar 

shifts in rank abundance and density plots were observed for DO-KO-2 relative to WT samples processed 

in parallel (Supplementary Fig. 2G-H). Thus, one component of the increased diversity of WT as 

compared to DO-KO peptidomes is an increased representation of lower-abundance species. 
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Validation of intensity differences  

Although individual peptides are detected in the mass spectrometer with different efficiencies depending 

on their charge, hydrophobicity and other factors, parent ion intensities as used above in diversity and 

rank abundance analysis provide reliable quantitation when averaged over many ions (65). To validate the 

quantitation of individual peptides, we used a stable isotope-labeling approach, in which synthetic 

peptides carrying 13C and/or 15N labels were introduced into eluted peptide samples before analysis and 

used as internal standards (Supplementary Table 13). Using volcano plot analysis (Fig. 5D), we selected 9 

peptides: 1 with parent ion intensities greater in WT than in DO-KO samples, 2 with intensities greater in 

DO-KO than in WT samples, and 6 with intensities approximately equal between the samples. We used 

the most abundant peptide containing each core epitope for analysis. The peptides sampled a range of 

masses, charges, hydrophobicities, and observed intensities. For most of the peptides, both +3 and +4 ions 

were observed; these were summed for the quantitation (Supplementary Table 13). A good correlation 

was observed between the observed intensities and the calculated amounts of peptides present (Fig. 4A), 

validating the peak integration and sample normalization procedures. Three replicates of one peptide fell 

off the line defined by the other peptides, presumably due to sequence-specific factors. The calculated 

amount of each peptide present in the WT and DO-KO eluates was used to determine an abundance ratio, 

which varied 20-fold between peptides, and which clearly distinguished peptides in the WT>DO-KO, 

WT≈DO-KO, and DO-KO>WT sets (Fig. 4B).  

 

Analysis of epitope source protein intracellular localization 

Because DO has been suggested to control the intracellular location of antigen loading through its effects 

on DM (26, 27, 66, 67), we evaluated the GO-annotated cellular compartments (68, 69) for source 

proteins from which the eluted peptides were derived. These were not appreciably different between WT 

and DO-KO, suggesting that the location of antigen loading was not substantially altered by the presence 

of DO (Supplementary Fig. 5A). We repeated this analysis for core epitopes identified uniquely in WT or 

DO-KO samples (identified as in Fig. 3B.) For core epitopes unique to WT, the distribution of source 
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proteins was similar to that for all peptides (Supplementary Fig. 5B). Comparison with DO-KO is 

hampered by the paucity of peptides found uniquely in these samples, but an increased representation of 

peptides derived from extracellular sources (secreted proteins and medium components) is apparent 

(Supplementary Fig. 5B), providing one possible explanation for some of the peptidome differences 

observed in the presence of DO. DO-KO mice previously have been observed to have increased capacity 

as compared to WT to present peptides derived from exogenous soluble protein antigens (28). However, 

extracellular proteins comprised only a small part of the overall peptidome, and we observed DO-

dependent differences in peptide presentation for epitopes derived from many intracellular sources, both 

intracellular and extracellular. Moreover, many epitopes were presented preferentially in WT as compared 

to DO-KO. Thus, we sought other explanations for the effect of DO on MHC-II peptidome diversity. 

 

DO expression allows for presentation of a population of DM-sensitive peptide antigens 

Given the role of DM in epitope selection (22, 70, 71) and the function of DO as an inhibitor of DM (23-

25), we sought to determine whether DO-dependent differences in the MHC-II peptidome were related to 

sensitivity to DM-mediated exchange. We first examined the relative abundance of three epitopes for 

which DM sensitivity has been previously characterized, summing the intensities of individual peptides 

that contain the respective core epitopes. CLIP and DR peptides were observed at lower abundance in 

the absence of DO (Fig. 5A-B, Supplementary Fig. 2I-J), whereas A2 peptides were not significantly 

different (Fig. 5C, Supplementary Fig. 2K), as expected from their known DM sensitivities, and 

consistent with surface expression data by FACS (Fig. 1F-G). To extend this analysis to additional 

peptides, we characterized the binding affinity and DM sensitivity of 38 additional peptides, grouped into 

sets according to their representation in WT and DO-KO-1 peptidomes (Fig. 5D-F, Supplementary Table 

14). The DO-KO>WT and DO-KO-only peptides fell within the range of the WT≈DO-KO peptide set, 

whereas the WT>DO-KO and WT-only peptides included several species with lower binding affinity and 

higher DM sensitivity. These results support the idea that the increased complexity of the WT as 
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compared to the DO-KO peptidome is due at least in part to increased representation of DM-sensitive 

epitopes that are lost when DO modulation of DM editing activity is absent.  

 

DO control of peptide diversity evaluated in a mouse model 

Given the DO-dependent peptide differences observed in human B cells, we sought to evaluate whether 

such differences would be similarly observed in a mouse model of DO deficiency. We made use of H2-O-

/- mice, which previously have been shown to exhibit autoimmune and immunodeficient phenotypes (3, 

28). As was observed for human B cells, H2-O deletion did not affect surface expression of MHC-II on 

mouse B cells (Fig. 6A), consistent with previous reports (3, 28). We immunoaffinity-purified I-Ab from 

WT and H2-O-/- splenic B cells, eluted bound peptides, and characterized peptidomes by mass 

spectrometry. As was observed for human B cells, a broad length distribution was observed for peptides 

eluted from both WT and H2-O-/- mouse B cells (Fig. 6B). As observed for human B cells, DO deletion in 

mice caused reductions in the number of unique peptides and the number of core epitopes presented by 

MHC-II, with reduced peptide diversity as measured by several indices, and skewed rank abundance and 

density plots (Fig. 6C-I, Supplementary Tables 3 and 6). To test whether the immune system is sensitive 

to DO-dependent peptide differences, we performed a cross-immunization experiment. H2-O-deficient 

and WT mice were immunized with irradiated splenocytes from WT and H2-O-deficient mice, with 

syngeneic splenocyte immunizations serving as controls. CD4 T cells of H2-O-/- recipient mice were 

activated when immunized with WT splenocytes, but CD4 T cells of WT recipients immunized with H2-

O-/- splenocytes were not significantly activated, nor were CD4 T cells of syngeneic control recipient mice 

(Fig. 6J-K). This unidirectional pattern, in which T cells were selectively activated only after having 

developed in the H2-O-/- mouse and when presented with WT peptides, suggest that peptides displayed on 

WT antigen-presenting cells (APCs) are recognized by H2-O-/- T cells due to the absence of these 

epitopes in the H2-O-/- mouse.  
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Discussion 

The role of DO in MHC-II antigen presentation has been the subject of numerous biochemical and 

immunological studies, but understanding of the biological function of DO has been complicated by 

conflicting reports, in which differing effects have been described depending on the epitope(s) examined 

(9, 11, 13, 24, 25, 28, 30-33, 72, 73). In addition, previous mass spectrometric studies of DO function 

were limited by the technology available at the time and only allowed for analysis of qualitative 

differences in eluted peptides (15, 24, 33). We sought to definitively determine the overall peptidome-

wide effect of DO on MHC-II antigen presentation as well as its in vivo effects. We thus performed a 

comprehensive analysis of the effect of DO on the self-peptide repertoire. We generated DO-KO and WT 

control cells using CRISPR/Cas9-mediated targeted gene deletion, and we eluted MHC-II-bound peptides 

from WT and DO-KO cells. We found that while many features of the DO-KO and WT peptidomes were 

similar, a striking difference was that fewer different peptide sequences were presented in the absence of 

DO. We ruled out several explanations that could account for these differences in peptide numbers, 

including different antigen source proteins and lower MHC input. We analyzed DO-KO versus WT 

peptidomes using unfragmented MS1 parent ion intensities, to avoid sampling issues intrinsic to 

conventional data-dependent acquisition proteomics, and validated the intensity-based analysis using 

isotope-labeled peptides. We calculated several measures of peptidome diversity and found that repertoire 

diversity was significantly reduced in the absence of DO. The picture that emerges from this quantitative 

analysis is of a steeper abundance profile in the absence of DO, with abundant epitopes presented in even 

more copies and many of the low abundance epitopes lost. Epitopes presented preferentially in WT 

exhibited lower binding affinity and increased DM sensitivity, demonstrating that increased DM activity 

is at least in part responsible for peptide differences in WT vs. DO-KO. We analyzed the peptidome 

presented by a single human MHC-II protein HLA-DR1. Other MHC-II proteins with similar DM 

sensitivities would be expected to behave similarly, but some autoimmune-linked MHC-II proteins have 

reduced DM sensitivity (74-76) and may show different behavior. To extend our observations to a mouse 
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model and test their immunological relevance in vivo, we performed elutions from I-Ab isolated from 

mouse B cells and similarly observed reduced peptide numbers in the absence of DO. Immunization 

experiments showed that H2-O-/- cells were selectively activated by WT APCs and not vice versa, 

suggesting that epitopes presented on WT cells were not recognized as self-antigens by T cells that were 

selected or developed in the absence of DO. These data indicate that expression of DO results in an 

altered MHC-II B cell peptidome and have broad implications with regard to the role of DO in 

immunological processes including thymic selection, peripheral tolerance, and entry and selection of B 

cells in the germinal center. 

 This study considerably extends previously reported analyses of the effect of DO on the MHC-II 

peptidome, in which the authors observed as many peptides presented uniquely in the presence of DO as 

peptides presented uniquely in the absence of DO (15, 33). Another study concluded that DO expression 

increases the stringency of DM editing (24), at odds with reports demonstrating that DO is an inhibitor of 

DM (23-25, 29). These analyses were limited by the available technology to comparing qualitative 

differences in MALDI spectra, with identification of very few if any individual peptide sequences. With 

advances in mass spectrometry sensitivity and mass accuracy (60, 77), we were able to characterize 

essentially the entire peptidomes of intact and of DO-deleted LG-2 cells (we estimate that lowest 

abundance peptides characterized in our study are present at only a few copies per cell or less). Using 

quantitative methods, we were able to obtain reliable peptidome comparisons and to characterize the full 

abundance profile, rather than simply the number of different peptides presented. These results suggest an 

apparent excess of peptides over MHC-II in loading compartments, as the restricted number of different 

peptide species in the absence of DO, presumably through increased DM editing, did not result in a lower 

number of peptide-MHC molecules but did result in decreased peptide diversity. This indicates 

substantially different constraints on MHC-II as compared to MHC-I processing, where peptide 

abundance is posited to limit presentation (78). While DO has been thought to focus antigen presentation 

by way of restricting presentation to very low pH compartments (26-29), we did not find evidence of 

differential sampling of intracellular compartments in the absence or presence of DO. Instead, and in 

 by guest on January 9, 2019
http://w

w
w

.m
cponline.org/

D
ow

nloaded from
 

http://www.mcponline.org/


 

 27 

contrast to conclusions made in previous MS analyses of DO function (15, 24, 33), we find that DO 

expression broadens antigen presentation, by promoting presentation of low affinity and/or DM-sensitive 

antigens. Our results suggest that when DO is downregulated relative to DM, for example upon B cell 

entry into the germinal center (11, 13) or during DC maturation (10, 12), the diversity of the MHC-II 

peptidome will be reduced, with increased DM editing leading to presentation of a more focused and 

limited peptide repertoire.  

We attribute much of the effect of DO expression on broadening the MHC-II peptide repertoire to 

inhibition of DM, with peptides more susceptible to DM-mediated peptide exchange preferentially 

presented when DM activity is reduced in the presence of DO. DO inhibition of DM activity has been 

demonstrated in vitro and in vivo (23-25, 29). Two recent studies have reported data on the effect of DM 

modulation/deletion on MHC-II peptidomes. In a study of DR3-expressing T2 cells transfected with 

different levels of DM, Alvaro-Benito et al. found that higher DM expression was associated with 

presentation of MHC-II-bound peptides with lower predicted MHC-II binding affinity (51). In a study 

comparing the peptide repertoires of 293T cells transfected with HLA-DQ molecules differentially 

associated with type 1 diabetes, Zhou et al. found that in the absence of DM, peptides with lower binding 

affinity and faster dissociation were presented (76). These studies are in agreement with our data with 

respect to DM-sensitive epitopes, in which peptides eluted only in the presence of DO were determined to 

be more sensitive to DM-mediated exchange. 

 At the cellular level, the results of this study indicate that DO exerts a selective effect on the 

MHC-II peptide repertoire, such that certain epitopes are presented only when DO is expressed, while 

other abundant peptide species are presented at lower density. While this work has delineated the overall 

effect of DO with respect to the MHC-II peptidome, these data also provide a mechanistic basis for 

epitope studies in which differing effects of DO have been demonstrated (9, 11, 13, 24, 25, 28, 30-33, 72, 

73). Results of our analysis suggest that depending on the specific features of the epitope examined, 

including whether it is DM-sensitive or –resistant as well as its abundance, DO expression can result in 

greater presentation, little change, or lesser presentation of a particular peptide species. In the context of 

 by guest on January 9, 2019
http://w

w
w

.m
cponline.org/

D
ow

nloaded from
 

http://www.mcponline.org/


 

 28 

the larger scope of the function of DO in antigen presentation, these data may also explain previous 

observations observed in settings in which DO expression has been modulated. Mice lacking DO have 

been shown to bear an autoimmune phenotype (3), and ectopic expression of DO in DCs was shown to 

result in prevention of diabetes in NOD mice (14). Based on our analysis, we posit that DO expression 

serves to prevent autoimmunity by allowing for deletion of autoreactive clonotypes in the thymus as well 

as by mediating presentation of a broad spectrum of self-antigens to promote peripheral tolerance. DO 

expression is downregulated relative to DM following exposure to inflammatory stimuli (7, 8, 10-12), and 

the consequent focusing of the MHC-II peptidome on immunodominant (i.e. DM-resistant (19, 21, 22)) 

epitopes may allow for a more efficient immune response. Such a role for DO regulation has been borne 

out in studies in which lack of DO has been shown to confer resistance to retrovirus as a result of 

neutralizing antibody production (1), as well as to enable preferential entry into germinal centers (2). 

Cell-specific expression of DO, which is then downregulated with the onset of inflammation, could allow 

for shifts in the MHC peptidome that serve the purpose of promoting tolerance (when DO is expressed) 

and generating an efficient immune response (when DO is downregulated). 

 In summary, this work defines a role for DO in regulating the MHC-II peptidome by effectively 

increasing the breadth of peptides presented to CD4 T cells and by modulating epitope density. Restricted 

and regulated expression of DO suggest the immune system has evolved to allow for presentation of an 

optimal MHC-II peptide repertoire to both promote tolerance and initiate an efficient immune response.  
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Figure Legends 

Figure 1. Generation of DO-KO and WT clones. (A) sgRNAs and target sequences for HLA-DO 

knockout. (B) Western blot for HLA-DO performed with lysates from indicated cell lines. (C,D) 

Intracellular HLA-DM (C) and surface HLA-DR (D) expression are similar among WT and DO-KO 

clones by FACS analysis. Isotype controls, gray. (E,F,G) Surface expression of peptide-MHC complexes, 

using mAbs LB3.1 (total HLA-DR), CerCLIP (DR-CLIP(79)), and UL5A1 (DR1-A2104-117). Mean ± SD 

(n=3) shown. Paired parametric t-test used to calculate p-values. gMFI, geometric mean intensity. 

 

Figure 2. DO expression results in presentation of a greater number of peptides. (A) Similar length 

distribution of eluted peptides. B) Core epitope illustrated for nested set of peptides from human 

transferrin receptor. (C) Similar sequence motifs within aligned core sequences for WT and DO-KO-1 

cells. (D) Similar trimming of peptides for WT vs. DO-KO-1. (E) Species richness. The number of unique 

peptides eluted from WT was significantly greater than for DO-KO-1 in each of 5 independent 

experiments. (F,G,H) Diversity indices. Chao2 index (F), Shannon’s entropy (G) and Simpson’s 

reciprocal diversity index (H) are greater for WT than for DO-KO-1, calculated for peptides observed in 

each of five biological replicates of both WT and DO-KO-1. Paired parametric t-test used to calculate p-

values. 

 

Figure 3. DO expression results in presentation of greater numbers of and a broader distribution of core 

epitopes. (A) The number of unique core epitopes observed in WT was significantly greater than for DO-

KO-1 cells in each of 5 independent experiments. Mean ± SD (n=5) shown. Paired parametric t-test used 

to calculate p-values. (B) More core epitopes are identified uniquely in WT as compared to DO-KO-1 

samples. Bar shading indicates number of replicate samples for which the core epitope was identified. For 

example, the black bar labeled “5X” indicates epitopes identified in each of 5 WT samples and none of 

the 5 DO-KO-1 samples, the dark gray bar labeled “4X” indicates samples identified in 4/5 WT samples 
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and no DO-KO-1 samples, etc. (C) Rank abundance plot. Fractional intensity of core epitopes from WT 

(blue) or DO-KO-1 (red) in each biological sample is represented as an individual line. (D) Histogram of 

fractional intensities of core epitopes, overlaid with a kernel density plot.  

 

Figure 4. Stable isotope-labeled peptide analysis validates MS1 intensity analysis. (A) Observed intensity 

versus amount measured using 13C- and 15N-labeled internal standards, for 9 selected peptides 

(Supplementary Table 13), each assayed in 3 replicate injections of a WT (blue) or DO-KO-1 (red) 

sample. Pearson correlation coefficient indicated. (B) Observed DO-KO-1/WT abundance ratio for 

peptides selected from groups with intensity greater in WT than DO-KO (blue), approximately equal 

intensity in WT and DO-KO (green), or greater in DO-KO than WT (red). Mean ± SD shown (n=3-10). 

 

Figure 5. DO expression increases presentation of low affinity and DM-sensitive peptides. (A-C) 

Relative abundance levels for peptides with known DM sensitivity were analyzed in 5 WT and DO-KO-1 

samples: DM-sensitive CLIP peptides (58) with core epitope MRMATPLLM (A), DM-sensitive DRα 

peptides (56) with core epitope FASFEAQGA (B), and DM-resistant A2 peptides (38) with the core 

epitope WRFLRGYHQ (C). Mean ± SD (n=5) shown. Paired parametric t-test used to calculate p-values. 

(D) Volcano plot for cores identified in each of all 5 biological samples for WT and DO-KO-1 samples. 

Cores with intensity ratio differences >2-fold and p-values <5.75E-04 (Benjamini-Hochberg-adjusted) are 

shown as black dots. Cores showing significant differences and selected for binding affinity studies, DM 

sensitivity studies and absolute quantification studies are shown in blue for WT>DO-KO, red for DO-

KO>WT, and green for WT≈DO-KO. (E) Binding affinity was characterized for sets of peptides observed 

in DO-KO only (1 peptide), WT only (15 peptides), or for peptides with intensities of WT>DO-KO (4 

peptides), WT<DO-KO (1 peptide), or WT=DO-KO (17 peptides). (F) The DM sensitivities for the same 

sets of peptides were assessed. Mean ± SD from 3 independent experiments shown for all peptides in each 

group; unpaired nonparametric Mann-Whitney test used to calculate p-values. 
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Figure 6. DO control of peptide diversity in a mouse model. (A) Equivalent I-Ab expression on splenic 

WT and H2-O-/- B cells. (B) Similar length distribution for peptides eluted from WT and H2-O-/- B cells. 

(C) Species richness. More unique peptides were eluted from WT than H2-O-/- B cells in each of 3 

independent experiments. Mean ± SD is shown. (D,E,F) Diversity indices. Chao2 index (D), Shannon’s 

entropy (E) and Simpson’s reciprocal diversity index (F) are greater for WT than for H2-O-/-, calculated 

for peptides observed in each of 3 biological replicates of both WT and H2-O-/-. (G) The number of 

unique core epitopes observed from WT was significantly greater than for H2-O-/- in each of 3 

independent experiments. Paired parametric t-test used to calculate p-values. (H) Rank abundance plot. 

Fractional intensity of core epitopes from WT (blue) or H2-O-/- (red) in each biological sample is 

represented as individual lines. (I) Histogram of fractional intensities of core epitopes, overlaid with a 

kernel density plot. (J,K) CD4 T cell activation measured by expression of CD25 (J) or CD69 (K) was 

observed when H2-O-/- mice (host) were immunized with WT splenocytes, but not when WT recipients 

were immunized with H2-O-/- splenocytes, or with splenocytes from syngeneic controls. Mean ± SD 

shown (n=8 mice/group, performed in 3 separate experiments with 2-3 mice/group). Unpaired 

nonparametric t-test used to calculate p-values.  
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Figure 1. Generation of DO-KO and WT clones.  
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Figure 2. DO expression results in presentation of a greater number of peptides.  
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Figure 3. DO expression results in presentation of greater numbers of and a broader distribution of core 

epitopes. 
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Figure 4. Stable isotope-labeled peptide analysis validates MS1 intensity analysis. 
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Figure 5. DO expression increases presentation of low affinity and DM-sensitive peptides.  
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Figure 6. DO control of peptide diversity in a mouse model. 
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