56 research outputs found
Nosocomial outbreak of neonatal Salmonella enterica serotype Enteritidis meningitis in a rural hospital in northern Tanzania
BACKGROUND: Clinicians at Haydom Lutheran Hospital, a rural hospital in northern Tanzania noted an unusually high case-fatality rate of pediatric meningitis and suspected an outbreak of an unknown agent or an organism resistant to the empirical therapy. METHODS: We established a provisional microbiology laboratory to investigate the suspected outbreak. Blood and spinal fluid specimens were taken from children below the age of seven years with suspected meningitis. The blood and spinal fluid specimens were inoculated in commercial blood culture bottles and locally prepared Thayer-Martin medium in slanted tubes, respectively. The bacterial isolates were sent to Norway for further investigation, including susceptibility testing and pulsed-field gel-electrophoresis (PFGE). RESULTS: Among 24 children with suspected meningitis and/or septicemia, five neonates had meningitis caused by Salmonella enterica serotype Enteritidis, all of whom died. Two children had S. Enteritidis septicemia without meningitis and both survived. Genotyping with PFGE suggested a clonal outbreak. The salmonella strain was resistant to ampicillin and sensitive to gentamicin, the two drugs commonly used to treat neonatal meningitis at the hospital. CONCLUSION: The investigation reminds us that nontyphoidal salmonellae can cause meningitis associated with very high case-fatality rates. Resistance to multiple antimicrobial agents increases the risk of treatment failure and may have contributed to the fatal outcome in all of the five patients with salmonella meningitis. The investigation indicated that the outbreak was nosocomial and the outbreak subsided after hygienic measures were instituted. Establishing a provisional microbiological laboratory is a valuable and affordable tool to investigate and control outbreaks even in remote rural areas
A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis
BACKGROUND: Mycobacterium tuberculosis is a leading cause of death worldwide. In multi-drug resistant tuberculosis (MDR-TB) infectiousness is frequently prolonged, jeopardizing efforts to control TB. The conventional tuberculosis drug susceptibility tests are sensitive and specific, but they are not rapid. The INNO-LiPA Rif. TB (® )(LiPA) is a commercial line probe assay designed to rapidly detect rifampicin resistance, a marker of MDR-TB. Although LiPA has shown promising results, its overall accuracy has not been systematically evaluated. METHODS: We did a systematic review and meta-analysis to evaluate the accuracy of LiPA for the detection of rifampicin-resistant tuberculosis among culture isolates and clinical specimens. We searched Medline, Embase, Web of Science, BIOSIS, and Google Scholar, and contacted authors, experts and the manufacturer. Fifteen studies met our inclusion criteria. Of these, 11 studies used culture isolates, one used clinical specimens, and three used both. We used a summary receiver operating characteristic (SROC) curve and Q* index to perform meta-analysis and summarize diagnostic accuracy. RESULTS: Twelve of 14 studies that applied LiPA to isolates had sensitivity greater than 95%, and 12 of 14 had specificity of 100%. The four studies that applied LiPA directly to clinical specimens had 100% specificity, and sensitivity that ranged between 80% and 100%. The SROC curve had an area of 0.99 and Q* of 0.97. CONCLUSION: LiPA is a highly sensitive and specific test for the detection of rifampicin resistance in culture isolates. The test appears to have relatively lower sensitivity when used directly on clinical specimens. More evidence is needed before LiPA can be used to detect MDR-TB among populations at risk in clinical practice
In-Depth Molecular Characterization of Mycobacterium tuberculosis from New Delhi – Predominance of Drug Resistant Isolates of the ‘Modern’ (TbD1−) Type
BACKGROUND: India has the highest estimated burden of tuberculosis in the world, accounting for 21% of all tuberculosis cases world-wide. However, due to lack of systematic analysis using multiple markers the available information on the genomic diversity of Mycobacterium tuberculosis in India is limited. METHODOLOGY/PRINCIPAL FINDINGS: Thus, 65 M. tuberculosis isolates from New Delhi, India were analyzed by spoligotyping, MIRU-VNTR, large deletion PCR typing and single nucleotide polymorphism analysis (SNP). The Central Asian (CAS) 1 _DELHI sub-lineage was the most prevalent sub-lineage comprising 46.2% (n = 30) of all isolates, with shared-type (ST) 26 being the most dominant genotype comprising 24.6% (n = 16) of all isolates. Other sub-lineages observed were: East-African Indian (EAI)-5 (9.2%, n = 6), EAI6_BGD1 (6.2%, n = 4), EAI3_IND, CAS and T1 with 6.2% each (n = 4 each), Beijing (4.6%, n = 3), CAS2 (3.1%, n = 2), and X1 and X2 with 1 isolate each. Genotyping results from five isolates (7.7%) did not match any existing spoligopatterns, and one isolate, ST124, belonged to an undefined lineage. Twenty-six percent of the isolates belonged to the TbD1+ PGG1 genogroup. SNP analysis of the pncA gene revealed a CAS-lineage specific silent mutation, S65S, which was observed for all CAS-lineage isolates (except two ST26 isolates) and in 1 orphan. Mutations in the pncA gene, conferring resistance to pyrazinamide, were observed in 15.4% of all isolates. Collectively, mutations in the rpoB gene, the katG gene and in both rpoB and katG genes, conferring resistance to rifampicin and isoniazid, respectively, were more frequent in CAS1_DELHI isolates compared to non-CAS_DELHI isolates (OR: 3.1, CI95% [1.11, 8.70], P = 0.045). The increased frequency of drug-resistance could not be linked to the patients' history of previous anti-tuberculosis treatment (OR: 1.156, CI95% [0.40, 3.36], P = 0.79). Fifty-six percent of all new tuberculosis patients had mutations in either the katG gene or the rpoB gene, or in both katG and rpoB genes. CONCLUSION: CAS1_DELHI isolates circulating in New Delhi, India have a high frequency of mutations in the rpoB and katG genes. A silent mutation (S65S) in the pncA gene can be used as a putative genetic marker for CAS-lineage isolates
Drug Resistant Mycobacterium tuberculosis of the Beijing Genotype Does Not Spread in Sweden
BACKGROUND: Drug resistant (DR) and multi-drug resistant (MDR) tuberculosis (TB) is increasing worldwide. In some parts of the world 10% or more of new TB cases are MDR. The Beijing genotype is a distinct genetic lineage of Mycobacterium tuberculosis, which is distributed worldwide, and has caused large outbreaks of MDR-TB. It has been proposed that certain lineages of M. tuberculosis, such as the Beijing lineage, may have specific adaptive advantages. We have investigated the presence and transmission of DR Beijing strains in the Swedish population. METHODOLOGY/PRINCIPAL FINDINGS: All DR M. tuberculosis complex isolates between 1994 and 2008 were studied. Isolates that were of Beijing genotype were investigated for specific resistance mutations and phylogenetic markers. Seventy (13%) of 536 DR strains were of Beijing genotype. The majority of the patients with Beijing strains were foreign born, and their country of origin reflects the countries where the Beijing genotype is most prevalent. Multidrug-resistance was significantly more common in Beijing strains than in non-Beijing strains. There was a correlation between the Beijing genotype and specific resistance mutations in the katG gene, the mabA-inhA-promotor and the rpoB gene. By a combined use of RD deletions, spoligotyping, IS1547, mutT gene polymorphism and Rv3135 gene analysis the Beijing strains could be divided into 11 genomic sublineages. Of the patients with Beijing strains 28 (41%) were found in altogether 10 clusters (2-5 per cluster), as defined by RFLP IS6110, while 52% of the patients with non-Beijing strains were in clusters. By 24 loci MIRU-VNTR 31 (45%) of the patients with Beijing strains were found in altogether 7 clusters (2-11 per cluster). Contact tracing established possible epidemiological linkage between only two patients with Beijing strains. CONCLUSIONS/SIGNIFICANCE: Although extensive outbreaks with non-Beijing TB strains have occurred in Sweden, Beijing strains have not taken hold, in spite of the proximity to high prevalence countries such as Russia and the Baltic countries. The Beijing sublineages so far introduced in Sweden may not be adapted to spread in the Scandinavian population
Molecular characterization of a catalase-negative staphylococcus aureus blood culture isolate
10.1128/JCM.01271-15Journal of Clinical Microbiology53113699-370
- …