261 research outputs found

    Transport properties of the metallic state of overdoped cuprate superconductors from an anisotropic marginal Fermi liquid model

    Full text link
    We consider the implications of a phenomenological model self-energy for the charge transport properties of the metallic phase of the overdoped cuprate superconductors. The self-energy is the sum of two terms with characteristic dependencies on temperature, frequency, location on the Fermi surface, and doping. The first term is isotropic over the Fermi surface, independent of doping, and has the frequency and temperature dependence characteristic of a Fermi liquid. The second term is anisotropic over the Fermi surface (vanishing at the same points as the superconducting energy gap), strongly varies with doping (scaling roughly with TcT_c, the superconducting transition temperature), and has the frequency and temperature dependence characteristic of a marginal Fermi liquid. Previously it has been shown this self-energy can describe a range of experimental data including angle-dependent magnetoresistance (ADMR) and quasi-particle renormalisations determined from specific heat, quantum oscillations, and angle-resolved photo-emission spectroscopy (ARPES). Without introducing new parameters and neglecting vertex corrections we show that this model self-energy can give a quantitative description of the temperature and doping dependence of a range of reported transport properties of Tl2201 samples. These include the intra-layer resistivity, the frequency dependent optical conductivity, the intra-layer magnetoresistance, and the Hall coefficient. The temperature dependence of the latter two are particularly sensitive to the anisotropy of the scattering rate and to the shape of the Fermi surface. In contrast, the temperature dependence of the Hall angle is dominated by the Fermi liquid contribution to the self-energy that determines the scattering rate in the nodal regions of the Fermi surface.Comment: 17 pages, 16 figure

    Holon-Doublon Binding as the Mechanism for the Mott transition

    Get PDF
    We study the binding of a holon to a doublon in a half-filled Hubbard model as the mechanism of the zero-temperature metal-insulator transition. In a spin polarized system and a non-bipartite lattice a single holon-doublon (HD) pair exhibits a binding transition (e.g., on a face-centred cubic lattice), or a sharp crossover (e.g., on a triangular lattice) corresponding well to the standard Mott transition in unpolarized systems. We extend the HD-pair study towards non-polarized systems by considering more general spin background and by treating the finite HD density within a BCS-type approximation. Both approaches lead to a discontinuous transition away from the fully polarized system and give density correlations consistent with numerical results on a triangular lattice.Comment: 6 pages, 4 figure

    The role of the maximum involvement of biopsy core in predicting outcome for patients treated with dose-escalated radiation therapy for prostate cancer

    Full text link
    Abstract Purpose To evaluate the influence of the maximum involvement of biopsy core (MIBC) on outcome for prostate cancer patients treated with dose-escalated external beam radiotherapy (EBRT). Methods and materials The outcomes of 590 men with localized prostate cancer treated with EBRT (≥75 Gy) at a single institution were retrospectively analyzed. The influence of MIBC on freedom from biochemical failure (FFBF), freedom from metastasis (FFM), cause-specific survival (CSS), and overall survival (OS) was compared to other surrogates for biopsy tumor volume, including the percentage of positive biopsy cores (PPC) and the total percentage of cancer volume (PCV). Results MIBC correlated with PSA, T-stage, Gleason score, NCCN risk group, PPC, PCV, and treatment related factors. On univariate analysis, MIBC was prognostic for all endpoints except OS; with greatest impact in those with Gleason scores of 8–10. However, on multivariate analysis, MIBC was only prognostic for FFBF (hazard ratio [HR] 1.9, p = 0.008), but not for FFM (p = 0.19), CSS (p = 0.16), and OS (p = 0.99). Conclusions In patients undergoing dose-escalated EBRT, MIBC had the greatest influence in those with Gleason scores of 8–10 but provided no additional prognostic data as compared to PPC and PCV, which remain the preferable prognostic variables in this patient population.http://deepblue.lib.umich.edu/bitstream/2027.42/112858/1/13014_2012_Article_631.pd

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below \approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    A consistent picture for large penguins in D -> pi+ pi-, K+ K-

    Full text link
    A long-standing puzzle in charm physics is the large difference between the D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF collaborations reported a surprisingly large difference between the direct CP asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are naturally related in the Standard Model via s- and d-quark "penguin contractions". Their sum gives rise to Delta A_CP, while their difference contributes to the two branching ratios with opposite sign. Assuming nominal SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay rates yields large penguin contractions that naturally explain Delta A_CP. Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure

    Coupled-resonator optical waveguides: Q-factor and disorder influence

    Full text link
    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder, imperfections, and a finite Q value may heavily affect the otherwise attractive properties of CROWs. We show how finite a Q factor limits the maximum attainable group delay time; the group index is limited by Q, but equally important the feasible device length is itself also limited by damping resulting from a finite Q. Adding the additional effects of disorder to this picture, limitations become even more severe due to destructive interference phenomena, eventually in the form of Anderson localization. Simple analytical considerations demonstrate that the maximum attainable delay time in CROWs is limited by the intrinsic photon lifetime of a single resonator.Comment: Accepted for Opt. Quant. Electro

    An oomycete NLP cytolysin forms transient small pores in lipid membranes

    Get PDF
    Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.Peer reviewe

    Determining γ\gamma using B±DK±B^\pm \to D K^\pm with multibody D decays

    Full text link
    We propose a method for determining γ\gamma using B±DK±B^\pm\to D K^\pm decays followed by a multibody DD decay, such as DKSππ+D \to K_S \pi^-\pi^+, DKSKK+D \to K_S K^-K^+ and DKSππ+π0D \to K_S \pi^-\pi^+\pi^0. The main advantages of the method is that it uses only Cabibbo allowed DD decays, and that large strong phases are expected due to the presence of resonances. Since no knowledge about the resonance structure is needed, γ\gamma can be extracted without any hadronic uncertainty.Comment: 17 pages, 1 figur

    Two component dark matter

    Full text link
    We explain the PAMELA positron excess and the PPB-BETS/ATIC e+ + e- data using a simple two component dark matter model (2DM). The two particle species in the dark matter sector are assumed to be in thermal equilibrium in the early universe. While one particle is stable and is the present day dark matter, the second one is metastable and decays after the universe is 10^-8 s old. In this model it is simple to accommodate the large boost factors required to explain the PAMELA positron excess without the need for large spikes in the local dark matter density. We provide the constraints on the parameters of the model and comment on possible signals at future colliders.Comment: 6 pages, 2 figures, discussion clarified and extende
    corecore