21 research outputs found

    Classification of Ventricular Septal Defects for the Eleventh Iteration of the International Classification of Diseases—Striving for Consensus: A Report From the International Society for Nomenclature of Paediatric and Congenital Heart Disease

    Get PDF
    The definition and classification of ventricular septal defects have been fraught with controversy. The International Society for Nomenclature of Paediatric and Congenital Heart Disease is a group of international specialists in pediatric cardiology, cardiac surgery, cardiac morphology, and cardiac pathology that has met annually for the past 9 years in an effort to unify by consensus the divergent approaches to describe ventricular septal defects. These efforts have culminated in acceptance of the classification system by the World Health Organization into the 11th Iteration of the International Classification of Diseases. The scheme to categorize a ventricular septal defect uses both its location and the structures along its borders, thereby bridging the two most popular and disparate classification approaches and providing a common language for describing each phenotype. Although the first-order terms are based on the geographic categories of central perimembranous, inlet, trabecular muscular, and outlet defects, inlet and outlet defects are further characterized by descriptors that incorporate the borders of the defect, namely the perimembranous, muscular, and juxta-arterial types. The Society recognizes that it is equally valid to classify these defects by geography or borders, so the emphasis in this system is on the second-order terms that incorporate both geography and borders to describe each phenotype. The unified terminology should help the medical community describe with better precision all types of ventricular septal defects

    Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature – The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11)

    Get PDF
    Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code ( IPCCC ) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases ( ICD-11 ). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC . The International Society for Nomenclature of Paediatric and Congenital Heart Disease ( ISNPCHD ), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature . This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature. The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC , as IPCCC continues to evolve

    Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

    Get PDF
    Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins

    Long-Range Cationic Order Collapse Triggered by S/Cl Mixed-Anion Occupancy Yields Enhanced Thermoelectric Properties in Cu5Sn2S7

    No full text
    International audienceIn oeder to investigate pathways to adjust the charge carrier concentration and optimize the thermoelectric properties, we characterized structural properties, thermal stability, and thermoelectric performance of pristine and Cl-doped Cu5+Ï”Sn2-Ï”S7. We demonstrate that Cl doping in Cu5Sn2S7-type monoclinic compounds induces a collapse of the long-range cationic ordering, ultimately leading to a sphalerite-type cubic phase characterized by ordered [Sn(S,Cl)4]x clusters. The change in crystal structure symmetry upon Cl doping is analyzed by Rietveld refinements against X-ray powder diffraction data, transmission electron microscopy, Mössbauer and X-ray absorption spectroscopy, and low-and high-temperature transport property measurements. The thermoelectric properties of the so-obtained cubic sphalerite Cu5+Ï”Sn2-Ï”S7-yCly (0 ≀ Ï” ≀ 0.133, y = 0.35, 0.70) are strongly enhanced with respect to the undoped Cu5Sn2S7: the power factor improves slightly while both electronic and lattice contributions to the thermal conductivity are reduced. Overall, single-phase Cl-doped Cu5.133Sn1.866S7-yCly (y = 0.35, 0.70) compounds exhibit high thermoelectric performance, reaching a maximum ZT of 0.45 at 670

    Long-Range Cationic Order Collapse Triggered by S/Cl Mixed-Anion Occupancy Yields Enhanced Thermoelectric Properties in Cu5Sn2S7

    No full text
    International audienceIn oeder to investigate pathways to adjust the charge carrier concentration and optimize the thermoelectric properties, we characterized structural properties, thermal stability, and thermoelectric performance of pristine and Cl-doped Cu5+Ï”Sn2-Ï”S7. We demonstrate that Cl doping in Cu5Sn2S7-type monoclinic compounds induces a collapse of the long-range cationic ordering, ultimately leading to a sphalerite-type cubic phase characterized by ordered [Sn(S,Cl)4]x clusters. The change in crystal structure symmetry upon Cl doping is analyzed by Rietveld refinements against X-ray powder diffraction data, transmission electron microscopy, Mössbauer and X-ray absorption spectroscopy, and low-and high-temperature transport property measurements. The thermoelectric properties of the so-obtained cubic sphalerite Cu5+Ï”Sn2-Ï”S7-yCly (0 ≀ Ï” ≀ 0.133, y = 0.35, 0.70) are strongly enhanced with respect to the undoped Cu5Sn2S7: the power factor improves slightly while both electronic and lattice contributions to the thermal conductivity are reduced. Overall, single-phase Cl-doped Cu5.133Sn1.866S7-yCly (y = 0.35, 0.70) compounds exhibit high thermoelectric performance, reaching a maximum ZT of 0.45 at 670

    Ordered sphalerite derivative Cu 5 Sn 2 S 7 : a degenerate semiconductor with high carrier mobility in the Cu–Sn–S diagram

    No full text
    International audienceRegardless of the complexity of the phase diagram of the Cu–Sn–S system, several compositions near the prototypical mohite Cu2SnS3 have arisen as potential non-toxic, earth-abundant and cost-efficient photovoltaic and thermoelectric materials. In this work, we revisited the Cu2+xSn1−xS3 system and discovered a monoclinic (C2) ordered sphalerite derivative member, Cu5Sn2S7. Using a combination of synchrotron diffraction and spectroscopy, transmission electron microscopy, precession-assisted electron diffraction tomography, Mössbauer spectroscopy, first principles calculations and transport properties measurements, we discuss the structure–thermoelectric properties relationships and clarify the interesting crystal chemistry in this system. The ternary sulfide Cu5Sn2S7 exhibits a degenerate semiconducting behavior with exceptionally high hole mobility originating from the interplay between atomic ordering and charge delocalization

    Ordered sphalerite derivative Cu 5 Sn 2 S 7 : a degenerate semiconductor with high carrier mobility in the Cu–Sn–S diagram

    No full text
    International audienceThe discovery of the monoclinic Cu 5 Sn 2 S 7 phase adds a high mobility member to the Cu–Sn–S diagram and demonstrates how the crystal structure can be advantageously manipulated to design novel compositions for energy-oriented applications

    Local-disorder-induced low thermal conductivity in degenerate semiconductor Cu22_{22}Sn10_{10}S32_{32}

    No full text
    International audienceS-based semiconductors are attracting attention as environmentally friendly materials for energy-conversion applications because of their structural complexity and chemical flexibility. Here, we show that the delicate interplay between the chemical composition and cationic order/disorder allows one to stabilize a new sphalerite derivative phase of cubic symmetry in the Cu-Sn-S diagram: Cu22_{22}Sn10_{10}S32_{32}. Interestingly, its crystal structure is characterized by a semiordered cationic distribution, with the Cu-Sn disorder being localized on one crystallographic site in a long-range-ordered matrix. The origin of the partial disorder and its influence on the electronic and thermal transport properties are addressed in detail using a combination of synchrotron X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy, theoretical modeling, and transport property measurements. These measurements evidence that this compound behaves as a pseudogap, degenerate p-type material with very low lattice thermal conductivity (0.5 W m−1^{-1} K−1^{-1} at 700 K). We show that localized disorder is very effective in lowering Îș(L) without compromising the integrity of the conductive framework. Substituting pentavalent Sb for tetravalent Sn is exploited to lower the hole concentration and doubles the thermoelectric figure of merit ZT to 0.55 at 700 K with respect to the pristine compound. The discovery of this semiordered cubic sphalerite derivative Cu22_{22}Sn10_{10}S32_{32} furthers the understanding of the structure-property relationships in the Cu-Sn-S system and more generally in ternary and quaternary Cu-based systems

    XBi 4 S 7 (X = Mn, Fe): New Cost‐Efficient Layered n ‐Type Thermoelectric Sulfides with Ultralow Thermal Conductivity

    No full text
    International audienceA new class of cost‐efficient n‐type thermoelectric sulfides with a layered structure is reported, namely MnBi4S7 and FeBi4S7. Theoretical calculations combined with synchrotron X‐ray/neutron diffraction analyses reveal the origin of their electronic and thermal properties. The complex low‐symmetry monoclinic crystal structure generates an electronic band structure with a mixture of heavy and light bands near the conduction band edge, as well as vibrational properties favorable for high thermoelectric performance. The low thermal conductivity can be attributed to the complex layered crystal structure and to the existence of the lone pair of electrons in Bi3+. This feature combined with the relatively high power factor lead to a figure of merit as high as 0.21 (700 K) in undoped MnBi4S7, making this material a promising n‐type candidate for low‐ and intermediate‐temperature thermoelectric applications

    XBi 4 S 7 (X = Mn, Fe): New Cost‐Efficient Layered n ‐Type Thermoelectric Sulfides with Ultralow Thermal Conductivity

    No full text
    International audienceA new class of cost‐efficient n‐type thermoelectric sulfides with a layered structure is reported, namely MnBi4S7 and FeBi4S7. Theoretical calculations combined with synchrotron X‐ray/neutron diffraction analyses reveal the origin of their electronic and thermal properties. The complex low‐symmetry monoclinic crystal structure generates an electronic band structure with a mixture of heavy and light bands near the conduction band edge, as well as vibrational properties favorable for high thermoelectric performance. The low thermal conductivity can be attributed to the complex layered crystal structure and to the existence of the lone pair of electrons in Bi3+. This feature combined with the relatively high power factor lead to a figure of merit as high as 0.21 (700 K) in undoped MnBi4S7, making this material a promising n‐type candidate for low‐ and intermediate‐temperature thermoelectric applications
    corecore