69 research outputs found

    Global atlas of solar and wind resources temporal complementarity

    Get PDF
    The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall's Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced

    Global atlas of solar and wind resources temporal complementarity

    Get PDF
    The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall’s Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced

    Forecasting Daily Water Consumption: a Case Study in Torun, Poland

    Get PDF
    This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited

    A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions

    Get PDF
    Global and regional trends indicate that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources into a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid energy sources is based on the complementary nature of renewable sources. Considering the growing importance of such systems and increasing number of research activities in this area this paper presents a comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatiotemporal complementarity between renewable energy sources. The review starts with a brief overview of available research papers, formulates detailed definition of major concepts, summarizes current research directions and ends with prospective future research activities. The review provides a chronological and spatial information with regard to the studies on the complementarity concept

    The impact of long-term changes in air temperature on renewable energy in poland

    Get PDF
    This paper analysed from the statistical point of view the trends in observed air temperature in major Polish cities and presented a qualitative analysis of their potential impact on the operation of the selected renewable energy sources. It also reviews the relation between the air temperature and observed electrical load as well as changing numbers of cooling and heating degree days. The method involved a statistical analysis of historical mean daily temperature observed in 19 major Polish cities over the 1968–2018 period. The air temperature change impact on renewable energy sector in Poland, by affecting the heating and cooling demand, the electrical load and the renewables working conditions both, on supply and demand side. The analysis reports that the mean daily temperature in all major polish cities is exhibiting a statistically significant increasing trend, up to 0.52 °C/decade. The observed increase in air temperature reduces the heating demand in Poland, beneficially for the environment and renewable supply. Increasing cooling needs in summer raises the energy consumption and indoor thermal stress. The climate warming affects the operation conditions, energy source, driving force, capacity and efficiency of renewable energy sources. The investigated changes were favourable and unfavourable depending on the renewable technology and operation mode, and were stronger on the demand side than on the supply side

    Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming

    Get PDF
    Renewable energy sources have shown remarkable growth in recent times in terms of their contribution to sustainable societies. However, integrating them into the national power grids is usually hindered because of their weather-dependent nature and variability. The combination of different sources to profit from their beneficial complementarity has often been proposed as a partial solution to overcome these issues. Thus, efficient planning for optimizing the exploitation of these energy resources requires different types of decision support tools. A mathematical index for assessing energetic complementarity between multiple energy sources constitutes an important tool for this purpose, allowing a comparison of complementarity between existing facilities at different planning stages and also allowing a dynamic assessment of complementarity between variable energy sources throughout the operation, assisting in the dispatch of power supplies. This article presents a method for quantifying and spatially representing the total temporal energetic complementarity between three different variable renewable sources, through an index created from correlation coefficients and compromise programming. The method is employed to study the complementarity of wind speed, solar radiation and surface runoff on a monthly scale using continental Colombia as a case study during the year of 2015

    Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island

    Get PDF
    This study investigates and compares the various combinations of renewable energies (solar, wind) and storage technologies (battery, pumped hydro storage, hybrid storage) for an off-grid power supply system. Four configurations (i.e., single RE source system, double RE source system, single storage, and double storage system) based on two scenarios (self-discharge equal to 0% and 1%) are considered, and their operational performance is compared and analyzed. The energy management strategy created for the hybrid pumped battery storage (HPBS) considers that batteries cover low energy surplus/shortages while pumped hydro storage (PHS) is the primary energy storage device for serving high-energy generations/deficits. The developed mathematical model is optimized using Particle Swarm Optimization and the performance and results of the optimizer are discussed in particular detail. The results evidence that self-discharge has a significant impact on the cost of energy (13%–50%) for all configurations due to the substantial increase in renewable energy (RE) generators size compared to the energy storage capacity. Even though solar-wind-PHS is the cost-optimal arrangement, it exhibits lower reliability when compared to solar-wind-HPBS. The study reveals the significance of HPBS in the off-grid RE environment, allowing more flexible energy management, enabling to guarantee a 100% power supply with minimum cost and reducing energy curtailment. Additionally, this study presents and discuss the results of a sensitivity analysis conducted by varying load demand and energy balance of all considered configurations is performed, which reveals the effectiveness of the supplementary functionality of both storages in hybrid mode. Overall, the role of energy storage in hybrid mode improved, and the total energy covered by hybrid storage increased (48%), which reduced the direct dependency on variable RE generation
    • …
    corecore