14 research outputs found

    An arrangement of secretory cells involved in the formation and storage of resin in tracheid-based secondary xylem of arborescent plants

    Get PDF
    The evolution of the vascular system has led to the formation of conducting and supporting elements and those that are involved in the mechanisms of storage and defense against the influence of biotic and abiotic factors. In the case of the latter, the general evolutionary trend was probably related to a change in their arrangement, i.e. from cells scattered throughout the tissue to cells organized into ducts or cavities. These cells, regardless of whether they occur alone or in a cellular structure, are an important defense element of trees, having the ability to synthesize, among others, natural resins. In the tracheid-based secondary xylem of gymnosperms, the resin ducts, which consist of secretory cells, are of two types: axial, interspersed between the tracheids, and radial, carried in some rays. They are interconnected and form a continuous system. On the other hand, in the tracheid-based secondary xylem of monocotyledons, the resin-producing secretory cells do not form specialized structures. This review summarizes knowledge on the morpho-anatomical features of various types of resin-releasing secretory cells in relation to their: (i) location, (ii) origin, (iii) mechanism of formation, (iv) and ecological significance

    Morphological Characteristics and Allometric Relationships of Shoot in Two Undergrowth Plants: Polygonatum odoratum and Polygonatum multiflorum

    Get PDF
    The main purpose of this investigation was to describe the spatial arrangement of shoot tissues, as seen in transverse section, and allometric relationships in two contrasting species of Polygonatum i.e., Polygonatum odoratum which commonly grows in mixed pine-oak forest with shoots rectangular in shape, and Polygonatum multiflorum found in oak-hornbeam forest with cylindrical shoots. The mass and length of the aerial shoots of each individual plant were measured. The shoot regions of each plant were then categorized as basal (b), central (c) or apical (a). Transverse sections of these shoot regions were subsequently cut, and the following parameters were measured: (1) Diameter of shoots, (2) thickness of the outer and inner zones of parenchyma and (3) thickness of the sclerenchyma zone. Additional allometric relationships between the various measurements were computed and determined as Pearson’s correlation coefficients (r). Both species of Polygonatum differed significantly with respect to the length, diameter and thickness of the outer zone of parenchyma. Shoots of P. multiflorum were taller but narrower than those of P. odoratum, which had a significantly wider zone of outer parenchyma. Allometric relationships were stronger for P. multiflorum, and for both species, they were generally stronger in the basal part of the shoot. We conclude that in P. multiflorum, the strong correlation between the diameter and length of the shoot seems to be important to the growth in shaded environments

    How Long Do Wood Parenchyma Cells Live in the Stem of a Scots Pine (Pinus sylvestris L.)? Studies on Cell Nuclei Status along the Radial and Longitudinal Stem Axes

    No full text
    This paper deals with the spatial distribution of heartwood in Scots pine stems (Pinus sylvestris L.), determined on the basis of the absence of nuclei in parenchyma cells. Samples were collected at several heights from two Scots pine stems growing in fresh coniferous stand as codominant trees. Transverse and radial sections were cut from the samples and stained with acetocarmine to detect the nuclei and with I2KI to show starch grains. Unstained sections were also observed under ultraviolet (UV) light to reveal cell wall lignification. The shapes of the nuclei in ray and axial parenchyma cells differed: the axial parenchyma cells had rounded nuclei, while the nuclei of the ray parenchyma cells were elongated. The lifespan of the parenchyma cells was found to be 16–42 years; the longest-lived were cells from the base of the stem, and the shortest-lived were from the base of the crown. The largest number of growth rings comprising heartwood was observed at a height of 1.3–3.3 m, which signifies that the distribution of heartwood within the stem is uneven. Moreover, the distance of the cells from the apical meristem and the cambium was seen to have an effect on the presence of living parenchyma cells, i.e., those with stained nuclei

    Leaf functional traits and insular colonization: Subtropical islands as a melting pot of trait diversity in a widespread plant lineage

    No full text
    [Aim] One of the main goals of functional biogeography is to examine distribution patterns of trait diversity, and islands provide excellent study cases for this emerging field. We tested the hypothesis that multiple dispersals from a common mainland pool would promote functional similarity among island systems when environmental conditions are similar, but also novel phenotypic traits related to colonization history and exploitation of new habitats.[Location] Mediterranean Basin and Macaronesian islands.[Taxon] Wolfbane (Periploca laevigata)[Methods] We used the well‐known biogeographical history of a woody plant complex (P. laevigata s.l.) to examine trait variation and how it relates to climatic conditions of mainland and subtropical island settings. In a common garden experiment, we measured a suite of leaf physiological and anatomical traits tightly related to plant performance in 320 seedlings representing 21 populations of five sublineages—the oldest (2.6 my) island colonization (western Canary Islands) as a reference, three sublineages stemming from independent events of island colonization in the last 0.5 my from NW Africa (Cape Verde, Fuerteventura, Lanzarote) and their widespread Mediterranean mainland counterpart.[Results] We observed strong phenotypic divergence between island and mainland sublineages linked to contrasting climatic conditions. Mediterranean mainland populations displayed a very specialized leaf phenotype characteristic of arid plants (i.e. small leaves, amphistomaty, isobilateral mesophyll, high photosynthetic rates). In turn, low seasonality on islands was linked to the recurrent expression of a phenotype characterized by larger leaves and lower photosynthetic rates. Our analyses showed that the high investment in secondary compounds (i.e. tannins) on islands decouples photosynthesis from growth rates. Despite this pattern of parallel differentiation, each island sublineage displayed a distinctive phenotype, with some traits related to colonization time, which resulted in a mosaic of functional variation across island systems.[Main conclusions] Our data suggest that the studied subtropical islands promote expression of traits specific to certain sublineages and other common traits that are no longer adaptive in the original mainland pool due to Pleistocene climatic shifts. These findings ultimately extend the role of islands as biodiversity refugia and hotspots of plant functional diversity.This research was funded by the European Regional Development Fund (Intereg projects CAVEGEN and ENCLAVES). C. G‐V was financially supported by a ‘Vicenç Mut' postdoctoral fellowship (Conselleria d'Innovació, Recerca i Turisme, Govern de les Illes Balears and the European Social Fund)
    corecore