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The evolution of the vascular system has led to the formation of conducting and

supporting elements and those that are involved in the mechanisms of storage

and defense against the influence of biotic and abiotic factors. In the case of the

latter, the general evolutionary trend was probably related to a change in their

arrangement, i.e. from cells scattered throughout the tissue to cells organized

into ducts or cavities. These cells, regardless of whether they occur alone or in a

cellular structure, are an important defense element of trees, having the ability to

synthesize, among others, natural resins. In the tracheid-based secondary xylem

of gymnosperms, the resin ducts, which consist of secretory cells, are of two

types: axial, interspersed between the tracheids, and radial, carried in some rays.

They are interconnected and form a continuous system. On the other hand, in

the tracheid-based secondary xylem of monocotyledons, the resin-producing

secretory cells do not form specialized structures. This review summarizes

knowledge on the morpho-anatomical features of various types of resin-

releasing secretory cells in relation to their: (i) location, (ii) origin, (iii)

mechanism of formation, (iv) and ecological significance.
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1 Introduction

Various types of secondary growth have emerged during evolution. A special type of

secondary growth has appeared in some monocotyledons, which is a manifestation of the

activity of the monocot cambium producing secondary xylem along with secondary

phloem in the form of vascular bundles (Carlquist, 2012; Jura-Morawiec et al., 2015;

Maděra et al., 2020; Jura-Morawiec et al., 2021; Tulik et al., 2022). Another product of the

monocot cambium is the parenchyma, the cells of which fill the space between the vascular

bundles and constitute a large part of the secondary growth (Hubálková et al., 2017). The
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secondary xylem in monocotyledons is represented by tracheids

(Carlquist, 2012; Jura-Morawiec, 2017). The secondary xylem in

conifers is formed from the vascular cambium and includes both

tracheids and parenchyma cells. In addition, the secondary xylem is

spatially separated from the secondary phloem and contains only

about 10% of parenchyma cells (Evert, 2006). Xylem parenchyma

cells perform many functions, i.e. they participate in the transport

and storage of water (Johnson et al., 2012; Klein et al., 2016;

Carlquist, 2018), are a good neighbor and take part in

postmortem tracheary element walls lignification (Baghdady et al.,

2006; Smith et al., 2013; Blokhina et al., 2019), they re-fill cavitated

tracheary elements (Spicer, 2014; Secchi et al., 2017), affect the

mechanical properties of xylem (Reiterer et al., 2002; Arbellay et al.,

2012), accumulate reserve substances (Tomasella et al., 2019;

Słupianek et al., 2021), synthesize secondary metabolites in the

process of heartwood formation (Hillis, 1987), participate in

compartmentalization after tree injury (Morris et al., 2016), and

secrete resin (Back, 2002; Cabrita, 2019). The latter function is

performed by specialized parenchyma cells forming secretory

structures (Bannan, 1936; Nagy et al., 2000). Among the

monocotyledons with tracheid- based secondary xylem, there is

only a small group of plants in the genus Dracaena, known as

dragon trees, which have the ability to secrete resin (Maděra et al.,

2020; Liu et al., 2021), which have the ability to secrete resin. Unlike

conifers, in the secondary growth of dragon tree, this function is

performed by single parenchyma cells (Jura-Morawiec and Tulik,

2015). However, these cells are difficult to identify among other

parenchyma cells and it is not known whether this is their only

function or whether they have many functions.

Although the secondary xylem of both conifers and dragon trees

is based on tracheids, the parenchyma cells present in their bodies

differ in terms of resin synthesize and secretion processes, therefore

in this review we summarize the knowledge on the morpho-

anatomical features of various types of resin-releasing secretory

cells, taking into account their: (i) location, (ii) origin, (iii)

mechanism of formation, (iv) and ecological significance.
2 Resin ducts in the secondary xylem
of coniferous trees

In conifers such as Cathaya, Pinus, Picea, Larix, Pseudotsuga,

and Keteleeria (K. davidiana, K. evelyniana) resin ducts (syn. resin

canals) are a normal feature of the secondary xylem, and their

formation can also be induced by external factors leading to

traumatic resin duct development. In contrast, Abies, Nothotsuga,

Tsuga, Cedrus or Pseudolarix are capable of producing only

traumatic resin ducts in the secondary xylem (Bannan, 1936; Wu

and Hu, 1997; Hudgins et al., 2005; Arbellay et al., 2014; Esteban

et al., 2021).

Among the various criteria for distinguishing the secretory

structures involved in resin synthesis, secretion, and accumulation

under hydrostatic pressure, one is based on their anatomical

structure. In the secondary xylem of Abies, Cedrus, Tsuga, and

Pseudolarix, the resin-producing cells form blisters, which are a sac-

like structure. This structure is surrounded with a layer of
Frontiers in Plant Science 02
parenchyma cells termed epithelial cells (Wu and Hu, 1997).

These cells die in the short time and their walls are lignified. In

turn, in Cathaya, Pinus, Picea, Larix and Pseudotsuga the tube-like

resin ducts are found. In these genera, thick-walled (except Pinus,

which has stretchable, thin-walled epithelial cells) and long-lived

secretory epithelial cells synthesize resin (Nagy et al., 2000). Not

only the thickness of the epithelial cell walls varies, but also their

number depending on the conifers. i.e. in Pinus sylvestris there are

usually 4-6 cells surrounding the lumen of the duct while in Picea,

Larix or Pseudotsuga there are 7-12 cells around the lumen

(Schweingruber, 1978). In addition, the epithelium may be

surrounded by 1-3 layers of pectin-enrich subsidiary cells easily

distinguishable morpho-anatomically from epithelial cells and

crushed during the development of the duct (Wiedenhoeft and

Miller, 2002; Esteban et al., 2005). The elongate crystals both in

epithelial and subsidiary parenchyma cells may also be present

(Wiedenhoeft et al., 2003).

Resin ducts are classified to their arrangement as axial and

radial. Epithelial cells of the axial resin ducts originate from

fusiform cambial initials, while those of the radial resin ducts

originate from ray cambial initials. The lumen between the

epithelial cells can be formed by cells separation (schizogenous),

cell lysis (lysigenous), or through a developmental process that

involves both schizogenous and lysigenous pathways, known as

schizolysigenous (Turner, 1999). The most commonly described

lumen duct formation is that of schizogenous formation (Nagy

et al., 2000) and occurs where it forms between the initial of the

epithelial cells after hydrolysis of the middle lamella that binds the

cells together. Auxin, which is involved in the secondary xylem

formation, may promote the differentiation of resin ducts (Aloni,

2021). Since resin ducts do not form until several weeks after auxin

application, hence it is assumed that in conifers the effect of auxin

on resin duct development may include auxin-ethylene crosstalk

(Fahn, 1988; Hudgins et al., 2006; Arbellay et al., 2014).

Resin ducts form co-planar networks in conifers secondary

xylem (Figure 1A). Axial resin ducts, with an average diameter of

200 µm, are usually found in the outer region of the earlywood and

in the first-formed latewood in every annual ring. Under normal

conditions there are only a few, scattered axial resin ducts in the

secondary xylem (Fahn et al., 1979; Wu and Hu, 1997). In spruce

they usually occur singly or in pairs, rarely in groups of three in

close proximity to each other. Normally, the axial resin ducts

become longer as the age of the cambium increases (LaPascha

and Wheeler, 1990; Krokene et al., 2008). Radial resin ducts start

with vertical ducts and appear in some rays. Since uniseriate rays are

many in conifers, those that include radial resin ducts are

multiseriate and named fusiform rays (IAWA Committee, 1964).

The density of the radial ducts in tangential sections varies from

0.15 to 3.5 ducts per mm2 of secondary xylem (Wu and Hu, 1997).

Axial and radial resin ducts occur in the secondary xylem of

Cathaya, Larix, Picea, Pinus and Psudotsuga while Keteleeria has

only vertical resin ducts (Wu and Hu, 1997; Esteban et al., 2021).

Traumatic resin ducts arise from cambial cells after trunk

induction with metal pins in Tsuga sieboldii as documented by

Kuroda and Shimaji (1983), and Picea abies trunk inoculated with

Ceratocystis polonica (Nagy et al., 2000). They are also formed is
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hormone-mediated mode, it is assumed that both MJ (methyl

jasmonate) and ethylene activate genes related to defense and

formation of traumatic resin ducts (McKay et al., 2003; Schmidt

et al., 2011). They appear relatively quickly after the injury,

however, the time of year when the injury occurs is believed to be

critical to the timing of traumatic resin duct onset (Gärtner and

Heinrich, 2009).

Traumatic resin ducts are typically distributed in dense

concentric series in the earlywood with a predominance in the

vertical axis and occur singly or form an anastomosing network of

cavities (Franceschi et al., 2002; Martin et al., 2002; Krokene et al.,

2003). In Cedrus, are present in both vertical and radial systems in

the vicinity of the wound (Fahn et al., 1979; Esteban et al., 2023).

Traumatic resin ducts tend to be shorter than the resin ducts that

are normal constituents of secondary xylem, however, in some cases

they may be also longer and wider, scattered and found in remote

areas from the injury (Krokene et al., 2008). Traumatic resin ducts

are usually accompanied by small-diameter tracheids with

thickened cell walls.

When considering the occurrence of resin ducts in compression

wood, it should be noted that although Lee and Eom (1988) saw

traumatic vertical resin ducts in Pinus koraiensis compression

wood, this feature does not appear to be a consistent

characteristic of compression wood. In species with resin ducts in

secondary xylem, large areas with severe compression wood that fill

the entire increment of secondary xylem often have no resin ducts,

but in small areas of transient compression wood or in mild

compression wood, resin ducts normally appear (Donaldson and

Singh, 2013). In Cedrus deodara, Xu et al. (2018) found that

branches with a 45° inclination and compression wood had more

resin ducts than branches with a different inclination and other

secondary xylem position.

Resin secretion is an important trait in the evolutionary

adaptation of conifers to environmental conditions. It is

chemically toxic, physically repels insects/pathogens and accounts
Frontiers in Plant Science 03
for up to 1-5% of pine stem mass under normal growth conditions,

but after treatment with chemical elicitors, an increase of resin

content in the stem by 20% is observed (Stubbs et al., 1984; Wolter

and Zinkel, 1984). Pinus rigida, P. merkusii, P. ponderosa, P.

caribaea or P. canariensis have an extraordinary content of resin

in the secondary xylem of trunk and are therefore referred to as

pitch pines in commerce (Esteban et al., 2005). As pointed out by

Hudgins et al. (2004), resin-producing members of the Pinaceae

family are threatened by aggressive insects, while those with little or

no resin have few or no aggressive pests. Despite the fact that plant

defenses resulting from resin synthesis are costly and requires

endogenous resource allocation and host energy input, they have

been found to show trade-offs in growth, reproduction, and

defensive traits (Herms and Mattson, 1992; Slack et al., 2017;

Tuller et al., 2018; Watss et al., 2023). In addition, resin ducts as

features of coniferous tree resistance may link dendrochronology

and resin-based defense mechanisms (Slack et al., 2017; Zhao and

Erbilgin, 2019; Hood et al., 2020; Vázquez-González et al., 2020;

Catherwood et al., 2022).

It is also worth noting that in addition to the resin ducts in the

sapwood, resin is also present in the heartwood, providing a defense

against fungal decay and increasing the durability of the secondary

xylem (Hillis, 1987; Piqueras et al., 2020; Bieniasz and Tulik, 2022).

During formation of heartwood the resin ducts are frequently

obstructed with tylosoids as a result of proliferation of the

epithelial cells (Howard and Manwiller, 1969; Leggate et al., 2020)

or due to the “fixation” of epithelial cells in a swollen state by events

coincident with the formation of heartwood, including deposition

of secondary cell walls and/or lignification as indicated by LaPascha

and Wheeler (1990). Cown et al. (2011) found that a mature Pinus

radiata stem contains approximately 25% heartwood with up to

10% resin content in the inner rings. Heartwood resin is stored in

the lumen of the tracheids, but resinous tracheids may also be seen

in sapwood which was reported in Pinus elliottii × Pinus caribaea by

Leggate et al. (2019; 2020).
BA

FIGURE 1

Cross sections through the trunk of Pinus sylvestris (A) and Dracaena draco (B). The axial resin duct and the ray carrying the radial resin duct
(fusiform ray), which together form a co-planar network in the secondary xylem. The asterisk denotes subsidiary cell, and the arrow denotes
epithelial cell with thin, cellulose cell walls (A). The white-sided rectangle covers the wound area with visible dragon’s blood in the tracheids of the
vascular bundles and in the parenchyma cells of the secondary growth (B).
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3 Resin-secreting cells in the
secondary growth of
monocotyledonous dragon trees

In the stem of the monocotyledonous dragon trees, secretion of

red resin, called dragon’s blood, does not involve forming

specialized structures (Fan et al., 2008; Jura-Morawiec and Tulik,

2015; Jura-Morawiec and Tulik, 2016). Resin-secreting parenchyma

cells have no morphological features to distinguish them. It has

been suggested that all of the living parenchyma cells in the

secondary body of stem have the potential for resin secretion

(Jura-Morawiec and Tulik, 2015), the only limitation is their

lifespan. To date, the lifespan of these cells has not been

investigated, but based on observations of lignin autofluorescence

in the stem of D. draco, it has been concluded that it is related to the

distance from the monocot cambium (Jura-Morawiec and Wiland-

Szymańska, 2014).With increasing radial distance from the

meristem, the cell walls of the parenchyma gradually become

lignified, followed by cell death, which excludes them from

resin production.

It is not clear how the resin is formed in parenchyma cells and

transported along the tissue. Ding et al. (2020) have suggested that the

major chemical constituents of dragon’s blood are transported out of

the intracellular space in response to various stimuli by three potential

transport mechanisms i.e., vesicle trafficking mediated transport, GST

(glutathione S-transferase) transport or membrane transport. Recent

studies of the leaf shedding of dragon trees have shown that dragon’s

blood is in the form of vesicles, which have a tendency to aggregate and

fill the cells or intercellular spaces (Jura-Morawiec et al., 2023). After

the injury of the secondary tissues, resin typically fills the parenchyma

cells and enters tracheids through the pits occluding their lumen (Cui

et al., 2013; Jura-Morawiec and Tulik, 2015; Xu et al., 2022; Figure 1B).

Resin secretion can be additionally enhanced by high humidity and

fungal infection (Wang et al., 2010, 2011), and its accumulation

increases after acid and sodium salt treatment (reviewed by Ding

et al., 2020).

The mass of living parenchyma cells with the ability to secrete

resin has a role in the dragon tree defense mechanism (Wang et al.,

2010; Jura-Morawiec and Tulik, 2016). After the injury, the resin-

filled parenchyma cells, together with the resin occluded lumen of

the tracheids, limit the spread of infection/pathogen in all

directions. In turn, the immediate solidification of the resin and

its red aposematic (warning) color prevent access to living tissue,

acting as a physical and chemical barrier. However, it should be

noted that the appearance of the red resin color is a gradual process

and is not visible immediately after the wound. In D. draco, it was

observed two weeks after stem cutting (Jura-Morawiec and Tulik,

2015), while in D. cochinchinensis it was visible 3-4 days after

wounding or fungal infection (Wang et al., 2011), with a clear red

layer covering the wound site after 90 days (Xu et al., 2022).
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4 Perspectives

In the course of evolution of the secondary growth, parenchyma

cells have acquired various functions including resin synthesis and

secretion. It seems that knowledge about the resin-based defense

mechanisms of coniferous species may be useful in predicting the

possibility of introducing alien coniferous species to new areas

under the conditions of ongoing global warming. Undoubtedly,

Cedrus libani or P. canariensis seem to be such species due to their

high wound-healing capacity. In the case of monocotyledonous

dragon trees, research efforts should focus on an in-depth

understanding of their biology. Although this study has been

going on since the 19th century, there is still a large gap in our

understanding of dragon’s blood secretion, including the

relationship between the lifespan of the parenchyma cells, the age

of the dragon tree, and resin production. Analysis of the biological

aging of parenchyma cells by measuring their metabolic activity in

combination with histochemical techniques can help fill this

knowledge gap.
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