30 research outputs found

    Highly stomach-selective gene transfer following gastric serosal surface instillation of naked plasmid DNA in rats.

    Get PDF
    BACKGROUND: The purpose of this study was to achieve stomach-selective gene transfer in rats by our simple and novel administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA). METHODS: Naked pDNA encoding firefly luciferase as a reporter gene was instilled onto the gastric serosal surface in male Wistar rats. As controls, we performed intraperitoneal, intragastric and intravenous administration of naked pDNA. At appropriate time intervals, we measured luciferase activities in the stomach and other tissues. RESULTS: Gene expression in the stomach 6 h after gastric serosal surface instillation of naked pDNA (5 microg) was significantly higher than that after using other administration methods. The present study is the first report on stomach-selective gene transfer following instillation of naked pDNA onto the gastric serosal surface in rats. Also, the gene expression level in the stomach 6 h after gastric serosal surface instillation of naked pDNA was markedly higher than that in other tissues. In a dose-dependent study, the gene expression level was saturated over 5 microg. Gene expression in the stomach was detected 3 h after gastric serosal surface instillation of naked pDNA. The gene expression level peaked 12-24 h after instillation of naked pDNA, then decreased to a level similar to 3 h at 48 h. CONCLUSIONS: Gastric serosal surface in stillation of naked pDNA can be a highly stomach-selective gene transfer method in rats

    Regional delivery of model compounds and 5-Fluorouracil to the liver by their application to the liver surface in rats: its implication for clinical use

    Get PDF
    PURPOSE: The purpose of this study was to examine drug distribution in the liver after drug application to the rat liver surface. METHODS: Phenolsulfonphthalein (PSP) and fluorescein isothiocyanate dextran (MW 4400, FD-4) as model compounds or 5-fluorouracil (5-FU) was applied to the rat liver surface by employing a cylindrical diffusion cell (i.d. 9 mm, 0.64 cm2). Then, blood and the remaining solution in the diffusion cell were collected at selected times, followed by excision of the liver. The excised liver was divided into three sites: the region under the diffusion cell attachment site (site 1), the applied lobe except for site 1 (site 2), and non-applied lobes (site 3). RESULTS: In the case of i.v. administration, there were no differences in PSP concentrations among the three sites of the rat liver, and the concentrations rapidly decreased. On the other hand, the PSP concentration in site 1 after application to the rat liver surface was considerably higher than in site 2 and site 3. In addition, the area under the curve (AUC) value (AUCsite1), calculated from the PSP concentration profile in site 1, was about 10 times larger than that in site 3. A similar trend of regional delivery advantage by liver surface application was observed in the case of the macromolecule model FD-4, with a marked AUCsite1 of about 5 times larger than the other two sites. Moreover, we clarified that the anticancer drug 5-FU preferentially distributed in site 1 after application to the rat liver surface. CONCLUSION: These results demonstrate the possibility of regional delivery of drugs to the liver by application to the liver surface

    Improved stomach selectivity of gene expression following microinstillation of plasmid DNA onto the gastric serosal surface in mice

    Get PDF
    Stomach-selective gene transfer is a promising approach as a therapeutic strategy for refractory gastric diseases. In this study, we improved the stomach selectivity of gene expression following microinstillation of naked plasmid DNA (pDNA) onto the gastric serosal surface in mice. pDNA encoding firefly luciferase was used as a reporter gene. It was confirmed that the gene expression level in the stomach 6 h after gastric serosal surface microinstillation of pDNA was significantlyhigher than after intragastric, intraperitoneal and intravenous administration. Regarding selectivity ofgene expression, the gene expression level in the stomach after gastric serosal surfacemicroinstillation of 1 μg/1 μL (dose/volume) pDNA was 5.7 times higher than that in the spleen. In our previous study (30 μg/30 μL), the expression level in the stomach was 2.7 times higher than that in the spleen; therefore, the selectivity was 2.1 times higher in this study. When we investigated gene expression at various pDNA solution concentrations, the ratio of the gene expression level in the stomach to that in the spleen was the highest as 1 μg/1 μL of pDNA, which was considered the optimal concentration. Information in this study is useful for further development of target organ-selective gene delivery systems

    Spleen-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Spleen Surface in Mice

    Get PDF
    The purpose of present study was to examine spleen-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the spleen surface in mice. Gene expression in the spleen and other tissues was evaluated based on firefly luciferase activity. Six hours after spleen surface instillation of naked pDNA, high gene expression in the spleen was observed. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the spleen surface, gene expression in the spleen was significantly higher than those in other tissues. Six hours after instillation of naked pDNA onto the spleen surface, gene expression in the spleen reached the peak value, and thereafter decreased gradually. By utilizing a glass-made diffusion cell that is able to limit the contact dimension between the spleen surface and naked pDNA solution administered, site-specific gene expression in the spleen was found. This novel gene transfer method is expected to be a safe and effective strategy for DNA vaccine against serious infectious diseases and cancers

    Unilateral Lung-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Pulmonary Pleural Surface in Mice

    Get PDF
    The purpose of the present study was to examine unilateral lung-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the pulmonary pleural surface in mice. Naked pDNA was administered intravenously, intraperitoneally, and instilled onto the right pulmonary pleural surface. Four hours later, right pulmonary pleural surface instillation of naked pDNA resulted in high gene expression in the right lung. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the right or left pulmonary pleural surface, gene expressions in the applied lung were significantly higher than those in the other lung and tissues. In addition, gene expressions were detected only in the intrathoracic tissues, not in the intraperitoneal tissues. Four hours after instillation of naked pDNA onto the right pulmonary pleural surface, gene expression in the right lung was the highest, and thereafter gene expression in the right lung decreased gradually. This novel gene transfer method is expected to be a safe and effective treatment against serious lung diseases
    corecore