6 research outputs found

    Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm

    Get PDF
    This work was partially supported by grants from NSFC (81773674, 81573383, and 21473041), NSFHP (2017CFA024, 2017CFB711, and 2016ACA126), the Applied Basic Research Program of WMBST (2019020701011429), Tibet Autonomous Region Science and Technology Plan Project Key Project (XZ201901-GB-11), Project First-Class Disciplines Development Supported by Chengdu University of Traditional Chinese Medicine (CZYJC1903), and Health Commission of Hubei Province Scientific Research Project (WJ2019M177 and WJ2019M178).Peer reviewedPublisher PD

    The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts

    No full text
    Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994–2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future

    Proteomic Analysis and NIR-II Imaging of MCM2 Protein in Hepatocellular Carcinoma

    No full text
    Targeted therapy of hepatocellular carcinoma (HCC) is essential for improved therapies. Therefore, identification of key targets specifically to HCC is an urgent requirement. Herein, an iTRAQ quantitative proteomic approach was employed to identify differentially expressed proteins in HCC tumor tissues. Of the upregulated tumor-related proteins, minichromosome maintenance 2 (MCM2), a DNA replication licensing factor, was one of the most significantly altered proteins, and its overexpression was confirmed using tissue microarray. Clinicopathological analysis of multiple cohorts of HCC patients indicated that overexpression of MCM2 was validated in 89.8% tumor tissues and strongly correlated with clinical stage. Furthermore, siRNA-mediated repression of MCM2 expression resulted in significant suppression of the HepG2 cell cycle and proliferation through the cyclin D-dependent kinases (CDKs) 2/7 pathway. Finally, the first small molecule-based MCM2-targeted NIR-II probe <b>CH1055-MCM2</b> was concisely generated and subsequently evaluated in mice bearing HepG2 xenografts. The excellent imaging properties such as good tumor uptake and high tumor contrast and specificity were achieved in the small animal models. This analytical strategy can determine novel accessible targets of HCC useful for imaging and therapy

    Protein Profiling of Active Cysteine Cathepsins in Living Cells Using an Activity-Based Probe Containing a Cell-Penetrating Peptide

    No full text
    Cell-permeable activity-based probes (ABPs) are capable of labeling target proteins in living cells, thereby providing a powerful tool for profiling active enzymes in their native environment. In this study, we describe the synthesis and use of a novel trifunctional cell-permeable activity-based probe (TCpABP) for proteomic profiling of active cysteine cathepsins in living cells. We demonstrate that although TCpABP contains cell-impermeable tags, it was able to enter living cells efficiently via the delivery of a cell-penetrating peptide. TCpABP also allowed simultaneous detection and affinity isolation of labeled proteins with a fluorophore and a biotin motif, respectively. We optimized the enrichment protocol to minimize contaminants and identified 7 cathepsins, 2 of which have never been identified using existing ABPs. We also used a label-free quantification approach to quantify the relative abundances of active cathepsins and compared them with their previously published mRNA expression levels. A high degree of correlation between the mRNA expression levels and protein relative activities was observed for most of the identified cathepsins except cathepsin H. The results herein indicate that TCpABP is valuable for the detection of active cathepsins in living cells and provides useful guidelines for designing novel cell-permeable ABPs for <i>in vivo</i> labeling and their applications in <i>in vivo</i> proteomics studies
    corecore